Multimodal recommender systems utilizing multimodal features (e.g., images and textual descriptions) typically show better recommendation accuracy than general recommendation models based solely on user-item interactions. Generally, prior work fuses multimodal features into item ID embeddings to enrich item representations, thus failing to capture the latent semantic item-item structures. In this context, LATTICE proposes to learn the latent structure between items explicitly and achieves state-of-the-art performance for multimodal recommendations. However, we argue the latent graph structure learning of LATTICE is both inefficient and unnecessary. Experimentally, we demonstrate that freezing its item-item structure before training can also achieve competitive performance. Based on this finding, we propose a simple yet effective model, dubbed as FREEDOM, that FREEzes the item-item graph and DenOises the user-item interaction graph simultaneously for Multimodal recommendation. Theoretically, we examine the design of FREEDOM through a graph spectral perspective and demonstrate that it possesses a tighter upper bound on the graph spectrum. In denoising the user-item interaction graph, we devise a degree-sensitive edge pruning method, which rejects possibly noisy edges with a high probability when sampling the graph. We evaluate the proposed model on three real-world datasets and show that FREEDOM can significantly outperform current strongest baselines. Compared with LATTICE, FREEDOM achieves an average improvement of 19.07% in recommendation accuracy while reducing its memory cost up to 6$\times$ on large graphs. The source code is available at: //github.com/enoche/FREEDOM.
Recent advancements in text-to-image diffusion models have yielded impressive results in generating realistic and diverse images. However, these models still struggle with complex prompts, such as those that involve numeracy and spatial reasoning. This work proposes to enhance prompt understanding capabilities in diffusion models. Our method leverages a pretrained large language model (LLM) for grounded generation in a novel two-stage process. In the first stage, the LLM generates a scene layout that comprises captioned bounding boxes from a given prompt describing the desired image. In the second stage, a novel controller guides an off-the-shelf diffusion model for layout-grounded image generation. Both stages utilize existing pretrained models without additional model parameter optimization. Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images according to prompts that require various capabilities, doubling the generation accuracy across four tasks on average. Furthermore, our method enables instruction-based multi-round scene specification and can handle prompts in languages not supported by the underlying diffusion model. We anticipate that our method will unleash users' creativity by accurately following more complex prompts.
Inspired by recent findings that generative diffusion models learn semantically meaningful representations, we use them to discover the intrinsic hierarchical structure in biomedical 3D images using unsupervised segmentation. We show that features of diffusion models from different stages of a U-Net-based ladder-like architecture capture different hierarchy levels in 3D biomedical images. We design three losses to train a predictive unsupervised segmentation network that encourages the decomposition of 3D volumes into meaningful nested subvolumes that represent a hierarchy. First, we pretrain 3D diffusion models and use the consistency of their features across subvolumes. Second, we use the visual consistency between subvolumes. Third, we use the invariance to photometric augmentations as a regularizer. Our models achieve better performance than prior unsupervised structure discovery approaches on challenging biologically-inspired synthetic datasets and on a real-world brain tumor MRI dataset.
We present the JVNV, a Japanese emotional speech corpus with verbal content and nonverbal vocalizations whose scripts are generated by a large-scale language model. Existing emotional speech corpora lack not only proper emotional scripts but also nonverbal vocalizations (NVs) that are essential expressions in spoken language to express emotions. We propose an automatic script generation method to produce emotional scripts by providing seed words with sentiment polarity and phrases of nonverbal vocalizations to ChatGPT using prompt engineering. We select 514 scripts with balanced phoneme coverage from the generated candidate scripts with the assistance of emotion confidence scores and language fluency scores. We demonstrate the effectiveness of JVNV by showing that JVNV has better phoneme coverage and emotion recognizability than previous Japanese emotional speech corpora. We then benchmark JVNV on emotional text-to-speech synthesis using discrete codes to represent NVs. We show that there still exists a gap between the performance of synthesizing read-aloud speech and emotional speech, and adding NVs in the speech makes the task even harder, which brings new challenges for this task and makes JVNV a valuable resource for relevant works in the future. To our best knowledge, JVNV is the first speech corpus that generates scripts automatically using large language models.
Neural collapse provides an elegant mathematical characterization of learned last layer representations (a.k.a. features) and classifier weights in deep classification models. Such results not only provide insights but also motivate new techniques for improving practical deep models. However, most of the existing empirical and theoretical studies in neural collapse focus on the case that the number of classes is small relative to the dimension of the feature space. This paper extends neural collapse to cases where the number of classes are much larger than the dimension of feature space, which broadly occur for language models, retrieval systems, and face recognition applications. We show that the features and classifier exhibit a generalized neural collapse phenomenon, where the minimum one-vs-rest margins is maximized.We provide empirical study to verify the occurrence of generalized neural collapse in practical deep neural networks. Moreover, we provide theoretical study to show that the generalized neural collapse provably occurs under unconstrained feature model with spherical constraint, under certain technical conditions on feature dimension and number of classes.
The chain graph model admits both undirected and directed edges in one graph, where symmetric conditional dependencies are encoded via undirected edges and asymmetric causal relations are encoded via directed edges. Though frequently encountered in practice, the chain graph model has been largely under investigated in literature, possibly due to the lack of identifiability conditions between undirected and directed edges. In this paper, we first establish a set of novel identifiability conditions for the Gaussian chain graph model, exploiting a low rank plus sparse decomposition of the precision matrix. Further, an efficient learning algorithm is built upon the identifiability conditions to fully recover the chain graph structure. Theoretical analysis on the proposed method is conducted, assuring its asymptotic consistency in recovering the exact chain graph structure. The advantage of the proposed method is also supported by numerical experiments on both simulated examples and a real application on the Standard & Poor 500 index data.
We present a deformable generator model to disentangle the appearance and geometric information for both image and video data in a purely unsupervised manner. The appearance generator network models the information related to appearance, including color, illumination, identity or category, while the geometric generator performs geometric warping, such as rotation and stretching, through generating deformation field which is used to warp the generated appearance to obtain the final image or video sequences. Two generators take independent latent vectors as input to disentangle the appearance and geometric information from image or video sequences. For video data, a nonlinear transition model is introduced to both the appearance and geometric generators to capture the dynamics over time. The proposed scheme is general and can be easily integrated into different generative models. An extensive set of qualitative and quantitative experiments shows that the appearance and geometric information can be well disentangled, and the learned geometric generator can be conveniently transferred to other image datasets to facilitate knowledge transfer tasks.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.