Transfer learning (TL) has emerged as a powerful tool to supplement data collected for a target task with data collected for a related source task. The Bayesian framework is natural for TL because information from the source data can be incorporated in the prior distribution for the target data analysis. In this paper, we propose and study Bayesian TL methods for the normal-means problem and multiple linear regression. We propose two classes of prior distributions. The first class assumes the difference in the parameters for the source and target tasks is sparse, i.e., many parameters are shared across tasks. The second assumes that none of the parameters are shared across tasks, but the differences are bounded in $\ell_2$-norm. For the sparse case, we propose a Bayes shrinkage estimator with theoretical guarantees under mild assumptions. The proposed methodology is tested on synthetic data and outperforms state-of-the-art TL methods. We then use this method to fine-tune the last layer of a neural network model to predict the molecular gap property in a material science application. We report improved performance compared to classical fine tuning and methods using only the target data.
Graph contrastive learning (GCL) has become a powerful tool for learning graph data, but its scalability remains a significant challenge. In this work, we propose a simple yet effective training framework called Structural Compression (StructComp) to address this issue. Inspired by a sparse low-rank approximation on the diffusion matrix, StructComp trains the encoder with the compressed nodes. This allows the encoder not to perform any message passing during the training stage, and significantly reduces the number of sample pairs in the contrastive loss. We theoretically prove that the original GCL loss can be approximated with the contrastive loss computed by StructComp. Moreover, StructComp can be regarded as an additional regularization term for GCL models, resulting in a more robust encoder. Empirical studies on various datasets show that StructComp greatly reduces the time and memory consumption while improving model performance compared to the vanilla GCL models and scalable training methods.
In the field of computer vision, self-supervised learning has emerged as a method to extract robust features from unlabeled data, where models derive labels autonomously from the data itself, without the need for manual annotation. This paper provides a comprehensive review of discriminative approaches of self-supervised learning within the domain of computer vision, examining their evolution and current status. Through an exploration of various methods including contrastive, self-distillation, knowledge distillation, feature decorrelation, and clustering techniques, we investigate how these approaches leverage the abundance of unlabeled data. Finally, we have comparison of self-supervised learning methods on the standard ImageNet classification benchmark.
The notion of Laplacian of a graph can be generalized to simplicial complexes and hypergraphs, and contains information on the topology of these structures. Even for a graph, the consideration of associated simplicial complexes is interesting to understand its shape. Whereas the Laplacian of a graph has a simple probabilistic interpretation as the generator of a continuous time Markov chain on the graph, things are not so direct when considering simplicial complexes. We define here new Markov chains on simplicial complexes. For a given order~$k$, the state space is the set of $k$-cycles that are chains of $k$-simplexes with null boundary. This new framework is a natural generalization of the canonical Markov chains on graphs. We show that the generator of our Markov chain is the upper Laplacian defined in the context of algebraic topology for discrete structure. We establish several key properties of this new process: in particular, when the number of vertices is finite, the Markov chain is positive recurrent. This result is not trivial, since the cycles can loop over themselves an unbounded number of times. We study the diffusive limits when the simplicial complexes under scrutiny are a sequence of ever refining triangulations of the flat torus. Using the analogy between singular and Hodge homologies, we express this limit as valued in the set of currents. The proof of tightness and the identification of the limiting martingale problem make use of the flat norm and carefully controls of the error terms in the convergence of the generator. Uniqueness of the solution to the martingale problem is left open. An application to hole detection is carried.
While Transformers have revolutionized deep learning, their quadratic attention complexity hinders their ability to process infinitely long inputs. We propose Feedback Attention Memory (FAM), a novel Transformer architecture that leverages a feedback loop to enable the network to attend to its own latent representations. This design fosters the emergence of working memory within the Transformer, allowing it to process indefinitely long sequences. TransformerFAM requires no additional weights, enabling seamless integration with pre-trained models. Our experiments show that TransformerFAM significantly improves Transformer performance on long-context tasks across various model sizes (1B, 8B, and 24B). These results showcase the potential to empower Large Language Models (LLMs) to process sequences of unlimited length.
Federated learning algorithms, such as FedAvg, are negatively affected by data heterogeneity and partial client participation. To mitigate the latter problem, global variance reduction methods, like FedVARP, leverage stale model updates for non-participating clients. These methods are effective under homogeneous client participation. Yet, this paper shows that, when some clients participate much less than others, aggregating updates with different levels of staleness can detrimentally affect the training process. Motivated by this observation, we introduce FedStale, a novel algorithm that updates the global model in each round through a convex combination of "fresh" updates from participating clients and "stale" updates from non-participating ones. By adjusting the weight in the convex combination, FedStale interpolates between FedAvg, which only uses fresh updates, and FedVARP, which treats fresh and stale updates equally. Our analysis of FedStale convergence yields the following novel findings: i) it integrates and extends previous FedAvg and FedVARP analyses to heterogeneous client participation; ii) it underscores how the least participating client influences convergence error; iii) it provides practical guidelines to best exploit stale updates, showing that their usefulness diminishes as data heterogeneity decreases and participation heterogeneity increases. Extensive experiments featuring diverse levels of client data and participation heterogeneity not only confirm these findings but also show that FedStale outperforms both FedAvg and FedVARP in many settings.
Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.
The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.