The goal of inverse rendering is to decompose geometry, lights, and materials given pose multi-view images. To achieve this goal, we propose neural direct and joint inverse rendering, NDJIR. Different from prior works which relies on some approximations of the rendering equation, NDJIR directly addresses the integrals in the rendering equation and jointly decomposes geometry: signed distance function, lights: environment and implicit lights, materials: base color, roughness, specular reflectance using the powerful and flexible volume rendering framework, voxel grid feature, and Bayesian prior. Our method directly uses the physically-based rendering, so we can seamlessly export an extracted mesh with materials to DCC tools and show material conversion examples. We perform intensive experiments to show that our proposed method can decompose semantically well for real object in photogrammetric setting and what factors contribute towards accurate inverse rendering.
Realistic face rendering from multi-view images is beneficial to various computer vision and graphics applications. Due to the complex spatially-varying reflectance properties and geometry characteristics of faces, however, it remains challenging to recover 3D facial representations both faithfully and efficiently in the current studies. This paper presents a novel 3D face rendering model, namely NeuFace, to learn accurate and physically-meaningful underlying 3D representations by neural rendering techniques. It naturally incorporates the neural BRDFs into physically based rendering, capturing sophisticated facial geometry and appearance clues in a collaborative manner. Specifically, we introduce an approximated BRDF integration and a simple yet new low-rank prior, which effectively lower the ambiguities and boost the performance of the facial BRDFs. Extensive experiments demonstrate the superiority of NeuFace in human face rendering, along with a decent generalization ability to common objects.
This paper proposes a practical photometric solution for the challenging problem of in-the-wild inverse rendering under unknown ambient lighting. Our system recovers scene geometry and reflectance using only multi-view images captured by a smartphone. The key idea is to exploit smartphone's built-in flashlight as a minimally controlled light source, and decompose image intensities into two photometric components -- a static appearance corresponds to ambient flux, plus a dynamic reflection induced by the moving flashlight. Our method does not require flash/non-flash images to be captured in pairs. Building on the success of neural light fields, we use an off-the-shelf method to capture the ambient reflections, while the flashlight component enables physically accurate photometric constraints to decouple reflectance and illumination. Compared to existing inverse rendering methods, our setup is applicable to non-darkroom environments yet sidesteps the inherent difficulties of explicit solving ambient reflections. We demonstrate by extensive experiments that our method is easy to implement, casual to set up, and consistently outperforms existing in-the-wild inverse rendering techniques. Finally, our neural reconstruction can be easily exported to PBR textured triangle mesh ready for industrial renderers.
Searching by image is popular yet still challenging due to the extensive interference arose from i) data variations (e.g., background, pose, visual angle, brightness) of real-world captured images and ii) similar images in the query dataset. This paper studies a practically meaningful problem of beauty product retrieval (BPR) by neural networks. We broadly extract different types of image features, and raise an intriguing question that whether these features are beneficial to i) suppress data variations of real-world captured images, and ii) distinguish one image from others which look very similar but are intrinsically different beauty products in the dataset, therefore leading to an enhanced capability of BPR. To answer it, we present a novel variable-attention neural network to understand the combination of multiple features (termed VM-Net) of beauty product images. Considering that there are few publicly released training datasets for BPR, we establish a new dataset with more than one million images classified into more than 20K categories to improve both the generalization and anti-interference abilities of VM-Net and other methods. We verify the performance of VM-Net and its competitors on the benchmark dataset Perfect-500K, where VM-Net shows clear improvements over the competitors in terms of MAP@7. The source code and dataset will be released upon publication.
We propose a robust method for learning neural implicit functions that can reconstruct 3D human heads with high-fidelity geometry from low-view inputs. We represent 3D human heads as the zero level-set of a composed signed distance field that consists of a smooth template, a non-rigid deformation, and a high-frequency displacement field. The template represents identity-independent and expression-neutral features, which is trained on multiple individuals, along with the deformation network. The displacement field encodes identity-dependent geometric details, trained for each specific individual. We train our network in two stages using a coarse-to-fine strategy without 3D supervision. Our experiments demonstrate that the geometry decomposition and two-stage training make our method robust and our model outperforms existing methods in terms of reconstruction accuracy and novel view synthesis under low-view settings. Additionally, the pre-trained template serves a good initialization for our model to adapt to unseen individuals.
We propose a novel type of map for visual navigation, a renderable neural radiance map (RNR-Map), which is designed to contain the overall visual information of a 3D environment. The RNR-Map has a grid form and consists of latent codes at each pixel. These latent codes are embedded from image observations, and can be converted to the neural radiance field which enables image rendering given a camera pose. The recorded latent codes implicitly contain visual information about the environment, which makes the RNR-Map visually descriptive. This visual information in RNR-Map can be a useful guideline for visual localization and navigation. We develop localization and navigation frameworks that can effectively utilize the RNR-Map. We evaluate the proposed frameworks on camera tracking, visual localization, and image-goal navigation. Experimental results show that the RNR-Map-based localization framework can find the target location based on a single query image with fast speed and competitive accuracy compared to other baselines. Also, this localization framework is robust to environmental changes, and even finds the most visually similar places when a query image from a different environment is given. The proposed navigation framework outperforms the existing image-goal navigation methods in difficult scenarios, under odometry and actuation noises. The navigation framework shows 65.7% success rate in curved scenarios of the NRNS dataset, which is an improvement of 18.6% over the current state-of-the-art. Project page: //rllab-snu.github.io/projects/RNR-Map/
We propose a scene-level inverse rendering framework that uses multi-view images to decompose the scene into geometry, a SVBRDF, and 3D spatially-varying lighting. Because multi-view images provide a variety of information about the scene, multi-view images in object-level inverse rendering have been taken for granted. However, owing to the absence of multi-view HDR synthetic dataset, scene-level inverse rendering has mainly been studied using single-view image. We were able to successfully perform scene-level inverse rendering using multi-view images by expanding OpenRooms dataset and designing efficient pipelines to handle multi-view images, and splitting spatially-varying lighting. Our experiments show that the proposed method not only achieves better performance than single-view-based methods, but also achieves robust performance on unseen real-world scene. Also, our sophisticated 3D spatially-varying lighting volume allows for photorealistic object insertion in any 3D location.
Transfer learning of StyleGAN has recently shown great potential to solve diverse tasks, especially in domain translation. Previous methods utilized a source model by swapping or freezing weights during transfer learning, however, they have limitations on visual quality and controlling source features. In other words, they require additional models that are computationally demanding and have restricted control steps that prevent a smooth transition. In this paper, we propose a new approach to overcome these limitations. Instead of swapping or freezing, we introduce a simple feature matching loss to improve generation quality. In addition, to control the degree of source features, we train a target model with the proposed strategy, FixNoise, to preserve the source features only in a disentangled subspace of a target feature space. Owing to the disentangled feature space, our method can smoothly control the degree of the source features in a single model. Extensive experiments demonstrate that the proposed method can generate more consistent and realistic images than previous works.
Neural Radiance Fields (NeRFs) have demonstrated amazing ability to synthesize images of 3D scenes from novel views. However, they rely upon specialized volumetric rendering algorithms based on ray marching that are mismatched to the capabilities of widely deployed graphics hardware. This paper introduces a new NeRF representation based on textured polygons that can synthesize novel images efficiently with standard rendering pipelines. The NeRF is represented as a set of polygons with textures representing binary opacities and feature vectors. Traditional rendering of the polygons with a z-buffer yields an image with features at every pixel, which are interpreted by a small, view-dependent MLP running in a fragment shader to produce a final pixel color. This approach enables NeRFs to be rendered with the traditional polygon rasterization pipeline, which provides massive pixel-level parallelism, achieving interactive frame rates on a wide range of compute platforms, including mobile phones.
GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model, for the image to be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling the pretrained GAN models such as StyleGAN and BigGAN to be used for real image editing applications. Meanwhile, GAN inversion also provides insights on the interpretation of GAN's latent space and how the realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on its recent algorithms and applications. We cover important techniques of GAN inversion and their applications to image restoration and image manipulation. We further elaborate on some trends and challenges for future directions.
Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.