亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present the first study of the computational complexity of converting an automata-based text index structure, called the Compact Directed Acyclic Word Graph (CDAWG), of size $e$ for a text $T$ of length $n$ into other text indexing structures for the same text, suitable for highly repetitive texts: the run-length BWT of size $r$, the irreducible PLCP array of size $r$, and the quasi-irreducible LPF array of size $e$, as well as the lex-parse of size $O(r)$ and the LZ77-parse of size $z$, where $r, z \le e$. As main results, we showed that the above structures can be optimally computed from either the CDAWG for $T$ stored in read-only memory or its self-index version of size $e$ without a text in $O(e)$ worst-case time and words of working space. To obtain the above results, we devised techniques for enumerating a particular subset of suffixes in the lexicographic and text orders using the forward and backward search on the CDAWG by extending the results by Belazzougui et al. in 2015.

相關內容

In this paper, we study the design and analysis of experiments conducted on a set of units over multiple time periods where the starting time of the treatment may vary by unit. The design problem involves selecting an initial treatment time for each unit in order to most precisely estimate both the instantaneous and cumulative effects of the treatment. We first consider non-adaptive experiments, where all treatment assignment decisions are made prior to the start of the experiment. For this case, we show that the optimization problem is generally NP-hard, and we propose a near-optimal solution. Under this solution, the fraction entering treatment each period is initially low, then high, and finally low again. Next, we study an adaptive experimental design problem, where both the decision to continue the experiment and treatment assignment decisions are updated after each period's data is collected. For the adaptive case, we propose a new algorithm, the Precision-Guided Adaptive Experiment (PGAE) algorithm, that addresses the challenges at both the design stage and at the stage of estimating treatment effects, ensuring valid post-experiment inference accounting for the adaptive nature of the design. Using realistic settings, we demonstrate that our proposed solutions can reduce the opportunity cost of the experiments by over 50%, compared to static design benchmarks.

In this paper, we consider the optimization problem Submodular Cover (SCP), which is to find a minimum cardinality subset of a finite universe $U$ such that the value of a submodular function $f$ is above an input threshold $\tau$. In particular, we consider several variants of SCP including the general case, the case where $f$ is additionally assumed to be monotone, and finally the case where $f$ is a regularized monotone submodular function. Our most significant contributions are that: (i) We propose a scalable algorithm for monotone SCP that achieves nearly the same approximation guarantees as the standard greedy algorithm in significantly faster time; (ii) We are the first to develop an algorithm for general SCP that achieves a solution arbitrarily close to being feasible; and finally (iii) we are the first to develop algorithms for regularized SCP. Our algorithms are then demonstrated to be effective in an extensive experimental section on data summarization and graph cut, two applications of SCP.

In this study, we propose to evaluate the use of deep learning methods for semantic classification at the sentence level to accelerate the process of corpus building in the field of humanities and linguistics, a traditional and time-consuming task. We introduce a novel corpus comprising around 2500 sentences spanning from 300 BCE to 900 CE including sexual semantics (medical, erotica, etc.). We evaluate various sentence classification approaches and different input embedding layers, and show that all consistently outperform simple token-based searches. We explore the integration of idiolectal and sociolectal metadata embeddings (centuries, author, type of writing), but find that it leads to overfitting. Our results demonstrate the effectiveness of this approach, achieving high precision and true positive rates (TPR) of respectively 70.60% and 86.33% using HAN. We evaluate the impact of the dataset size on the model performances (420 instead of 2013), and show that, while our models perform worse, they still offer a high enough precision and TPR, even without MLM, respectively 69% and 51%. Given the result, we provide an analysis of the attention mechanism as a supporting added value for humanists in order to produce more data.

In this paper we consider data storage from a probabilistic point of view and obtain bounds for efficient storage in the presence of feature selection and undersampling, both of which are important from the data science perspective. First, we consider encoding of correlated sources for nonstationary data and obtain a Slepian-Wolf type result for the probability of error. We then reinterpret our result by allowing one source to be the set of features to be discarded and other source to be remaining data to be encoded. Next, we consider neighbourhood domination in random graphs where we impose the condition that a fraction of neighbourhood must be present for each vertex and obtain optimal bounds on the minimum size of such a set. We show how such sets are useful for data undersampling in the presence of imbalanced datasets and briefly illustrate our result using~\(k-\)nearest neighbours type classification rules as an example.

In this article, we design and analyze a Hybrid High-Order (HHO) finite element approximation for a class of strongly nonlinear boundary value problems. We consider an HHO discretization for a suitable linearized problem and show its well-posedness using the Gardings type inequality. The essential ingredients for the HHO approximation involve local reconstruction and high-order stabilization. We establish the existence of a unique solution for the HHO approximation using the Brouwer fixed point theorem and contraction principle. We derive an optimal order a priori error estimate in the discrete energy norm. Numerical experiments are performed to illustrate the convergence histories.

In this paper, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. In contrast to most existing algorithms for optimisation with inequality constraints, the proposed algorithm does not need any slack variables. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the extended dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses.

In this paper, we provide 20,000 non-trivial human annotations on popular datasets as a first step to bridge gap to studying how natural semantic spurious features affect image classification, as prior works often study datasets mixing low-level features due to limitations in accessing realistic datasets. We investigate how natural background colors play a role as spurious features by annotating the test sets of CIFAR10 and CIFAR100 into subgroups based on the background color of each image. We name our datasets \textbf{CIFAR10-B} and \textbf{CIFAR100-B} and integrate them with CIFAR-Cs. We find that overall human-level accuracy does not guarantee consistent subgroup performances, and the phenomenon remains even on models pre-trained on ImageNet or after data augmentation (DA). To alleviate this issue, we propose \textbf{FlowAug}, a \emph{semantic} DA that leverages decoupled semantic representations captured by a pre-trained generative flow. Experimental results show that FlowAug achieves more consistent subgroup results than other types of DA methods on CIFAR10/100 and on CIFAR10/100-C. Additionally, it shows better generalization performance. Furthermore, we propose a generic metric, \emph{MacroStd}, for studying model robustness to spurious correlations, where we take a macro average on the weighted standard deviations across different classes. We show \textit{MacroStd} being more predictive of better performances; per our metric, FlowAug demonstrates improvements on subgroup discrepancy. Although this metric is proposed to study our curated datasets, it applies to all datasets that have subgroups or subclasses. Lastly, we also show superior out-of-distribution results on CIFAR10.1.

We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

北京阿比特科技有限公司