亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the era of Big Data, Markov chain Monte Carlo (MCMC) methods, which are currently essential for Bayesian estimation, face significant computational challenges owing to their sequential nature. To achieve a faster and more effective parallel computation, we emphasize the critical role of the overlapped area of the posterior distributions based on partitioned data, which we term the reconstructable area. We propose a method that utilizes machine learning classifiers to effectively identify and extract MCMC draws obtained by parallel computations from the area based on posteriors based on partitioned sub-datasets, approximating the target posterior distribution based on the full dataset. This study also develops a Kullback-Leibler (KL) divergence-based criterion. It does not require calculating the full-posterior density and can be calculated using only information from the sub-posterior densities, which are generally obtained after implementing MCMC. This simplifies the hyperparameter tuning in training classifiers. The simulation studies validated the efficacy of the proposed method. This approach contributes to ongoing research on parallelizing MCMC methods and may offer insights for future developments in Bayesian computation for large-scale data analyses.

相關內容

This paper presents the Advanced Reasoning and Transformation Engine for Multi-Step Insight Synthesis in Data Analytics (ARTEMIS-DA), a novel framework designed to augment Large Language Models (LLMs) for solving complex, multi-step data analytics tasks. ARTEMIS-DA integrates three core components: the Planner, which dissects complex user queries into structured, sequential instructions encompassing data preprocessing, transformation, predictive modeling, and visualization; the Coder, which dynamically generates and executes Python code to implement these instructions; and the Grapher, which interprets generated visualizations to derive actionable insights. By orchestrating the collaboration between these components, ARTEMIS-DA effectively manages sophisticated analytical workflows involving advanced reasoning, multi-step transformations, and synthesis across diverse data modalities. The framework achieves state-of-the-art (SOTA) performance on benchmarks such as WikiTableQuestions and TabFact, demonstrating its ability to tackle intricate analytical tasks with precision and adaptability. By combining the reasoning capabilities of LLMs with automated code generation and execution and visual analysis, ARTEMIS-DA offers a robust, scalable solution for multi-step insight synthesis, addressing a wide range of challenges in data analytics.

Generative AI and Large Language Models (LLMs) hold promise for automating spreadsheet formula creation. However, due to hallucinations, bias and variable user skill, outputs obtained from generative AI cannot be assumed to be accurate or trustworthy. To address these challenges, a trustworthiness framework is proposed based on evaluating the transparency and dependability of the formula. The transparency of the formula is explored through explainability (understanding the formula's reasoning) and visibility (inspecting the underlying algorithms). The dependability of the generated formula is evaluated in terms of reliability (consistency and accuracy) and ethical considerations (bias and fairness). The paper also examines the drivers to these metrics in the form of hallucinations, training data bias and poorly constructed prompts. Finally, examples of mistrust in technology are considered and the consequences explored.

The remarkable success of Large Language Models (LLMs) relies heavily on their substantial scale, which poses significant challenges during model deployment in terms of latency and memory consumption. Recently, numerous studies have attempted to compress LLMs using one-shot pruning methods. However, these methods often suffer from considerable performance degradation on complex language understanding tasks, raising concerns about the feasibility of pruning in LLMs. To address this issue, we propose Adaptive Sparse Trainer (AST), a novel and efficient retraining framework tailored for semi-structured sparse models. AST enables models to learn optimal masks during the weight update process without incurring additional computational overhead. Furthermore, we demonstrate that incorporating knowledge distillation significantly improves retraining efficiency and enhances model performance under fixed computational constraints. Additionally, a supplementary set of well-initialized parameters is integrated to further augment the model's efficacy. AST achieves state-of-the-art performance with minimal training cost. When applied to the LLaMA2-7B model, AST reduces the perplexity and zero-shot accuracy gap between dense and 2:4 semi-structured sparse models to 0.6 and 1.16%, respectively, utilizing less than 0.4% of the pretraining tokens and GPU hours. Our work demonstrates the feasibility of deploying semi-structured sparse LLMs and offers a promising alternative for achieving highly compressed models when combined with existing quantization techniques.

The decompose-then-verify strategy for verification of Large Language Model (LLM) generations decomposes claims that are then independently verified. Decontextualization augments text (claims) to ensure it can be verified outside of the original context, enabling reliable verification. While decomposition and decontextualization have been explored independently, their interactions in a complete system have not been investigated. Their conflicting purposes can create tensions: decomposition isolates atomic facts while decontextualization inserts relevant information. Furthermore, a decontextualized subclaim presents a challenge to the verification step: what part of the augmented text should be verified as it now contains multiple atomic facts? We conduct an evaluation of different decomposition, decontextualization, and verification strategies and find that the choice of strategy matters in the resulting factuality scores. Additionally, we introduce DnDScore, a decontextualization aware verification method which validates subclaims in the context of contextual information.

Graph Neural Networks (GNNs) are state-of-the-art models for performing prediction tasks on graphs. While existing GNNs have shown great performance on various tasks related to graphs, little attention has been paid to the scenario where out-of-distribution (OOD) nodes exist in the graph during training and inference. Borrowing the concept from CV and NLP, we define OOD nodes as nodes with labels unseen from the training set. Since a lot of networks are automatically constructed by programs, real-world graphs are often noisy and may contain nodes from unknown distributions. In this work, we define the problem of graph learning with out-of-distribution nodes. Specifically, we aim to accomplish two tasks: 1) detect nodes which do not belong to the known distribution and 2) classify the remaining nodes to be one of the known classes. We demonstrate that the connection patterns in graphs are informative for outlier detection, and propose Out-of-Distribution Graph Attention Network (OODGAT), a novel GNN model which explicitly models the interaction between different kinds of nodes and separate inliers from outliers during feature propagation. Extensive experiments show that OODGAT outperforms existing outlier detection methods by a large margin, while being better or comparable in terms of in-distribution classification.

Connecting Vision and Language plays an essential role in Generative Intelligence. For this reason, in the last few years, a large research effort has been devoted to image captioning, i.e. the task of describing images with syntactically and semantically meaningful sentences. Starting from 2015 the task has generally been addressed with pipelines composed of a visual encoding step and a language model for text generation. During these years, both components have evolved considerably through the exploitation of object regions, attributes, and relationships and the introduction of multi-modal connections, fully-attentive approaches, and BERT-like early-fusion strategies. However, regardless of the impressive results obtained, research in image captioning has not reached a conclusive answer yet. This work aims at providing a comprehensive overview and categorization of image captioning approaches, from visual encoding and text generation to training strategies, used datasets, and evaluation metrics. In this respect, we quantitatively compare many relevant state-of-the-art approaches to identify the most impactful technical innovations in image captioning architectures and training strategies. Moreover, many variants of the problem and its open challenges are analyzed and discussed. The final goal of this work is to serve as a tool for understanding the existing state-of-the-art and highlighting the future directions for an area of research where Computer Vision and Natural Language Processing can find an optimal synergy.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm

We investigate the problem of automatically determining what type of shoe left an impression found at a crime scene. This recognition problem is made difficult by the variability in types of crime scene evidence (ranging from traces of dust or oil on hard surfaces to impressions made in soil) and the lack of comprehensive databases of shoe outsole tread patterns. We find that mid-level features extracted by pre-trained convolutional neural nets are surprisingly effective descriptors for this specialized domains. However, the choice of similarity measure for matching exemplars to a query image is essential to good performance. For matching multi-channel deep features, we propose the use of multi-channel normalized cross-correlation and analyze its effectiveness. Our proposed metric significantly improves performance in matching crime scene shoeprints to laboratory test impressions. We also show its effectiveness in other cross-domain image retrieval problems: matching facade images to segmentation labels and aerial photos to map images. Finally, we introduce a discriminatively trained variant and fine-tune our system through our proposed metric, obtaining state-of-the-art performance.

北京阿比特科技有限公司