亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The utilization of discrete speech tokens, divided into semantic tokens and acoustic tokens, has been proven superior to traditional acoustic feature mel-spectrograms in terms of naturalness and robustness for text-to-speech (TTS) synthesis. Recent popular models, such as VALL-E and SPEAR-TTS, allow zero-shot speaker adaptation through auto-regressive (AR) continuation of acoustic tokens extracted from a short speech prompt. However, these AR models are restricted to generate speech only in a left-to-right direction, making them unsuitable for speech editing where both preceding and following contexts are provided. Furthermore, these models rely on acoustic tokens, which have audio quality limitations imposed by the performance of audio codec models. In this study, we propose a unified context-aware TTS framework called UniCATS, which is capable of both speech continuation and editing. UniCATS comprises two components, an acoustic model CTX-txt2vec and a vocoder CTX-vec2wav. CTX-txt2vec employs contextual VQ-diffusion to predict semantic tokens from the input text, enabling it to incorporate the semantic context and maintain seamless concatenation with the surrounding context. Following that, CTX-vec2wav utilizes contextual vocoding to convert these semantic tokens into waveforms, taking into consideration the acoustic context. Our experimental results demonstrate that CTX-vec2wav outperforms HifiGAN and AudioLM in terms of speech resynthesis from semantic tokens. Moreover, we show that UniCATS achieves state-of-the-art performance in both speech continuation and editing.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Dysarthric speech reconstruction (DSR) aims to transform dysarthric speech into normal speech by improving the intelligibility and naturalness. This is a challenging task especially for patients with severe dysarthria and speaking in complex, noisy acoustic environments. To address these challenges, we propose a novel multi-modal framework to utilize visual information, e.g., lip movements, in DSR as extra clues for reconstructing the highly abnormal pronunciations. The multi-modal framework consists of: (i) a multi-modal encoder to extract robust phoneme embeddings from dysarthric speech with auxiliary visual features; (ii) a variance adaptor to infer the normal phoneme duration and pitch contour from the extracted phoneme embeddings; (iii) a speaker encoder to encode the speaker's voice characteristics; and (iv) a mel-decoder to generate the reconstructed mel-spectrogram based on the extracted phoneme embeddings, prosodic features and speaker embeddings. Both objective and subjective evaluations conducted on the commonly used UASpeech corpus show that our proposed approach can achieve significant improvements over baseline systems in terms of speech intelligibility and naturalness, especially for the speakers with more severe symptoms. Compared with original dysarthric speech, the reconstructed speech achieves 42.1\% absolute word error rate reduction for patients with more severe dysarthria levels.

Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.

Secure two-party computation with homomorphic encryption (HE) protects data privacy with a formal security guarantee but suffers from high communication overhead. While previous works, e.g., Cheetah, Iron, etc, have proposed efficient HE-based protocols for different neural network (NN) operations, they still assume high precision, e.g., fixed point 37 bit, for the NN operations and ignore NNs' native robustness against quantization error. In this paper, we propose HEQuant, which features low-precision-quantization-aware optimization for the HE-based protocols. We observe the benefit of a naive combination of quantization and HE quickly saturates as bit precision goes down. Hence, to further improve communication efficiency, we propose a series of optimizations, including an intra-coefficient packing algorithm and a quantization-aware tiling algorithm, to simultaneously reduce the number and precision of the transferred data. Compared with prior-art HE-based protocols, e.g., CrypTFlow2, Cheetah, Iron, etc, HEQuant achieves $3.5\sim 23.4\times$ communication reduction and $3.0\sim 9.3\times$ latency reduction. Meanwhile, when compared with prior-art network optimization frameworks, e.g., SENet, SNL, etc, HEQuant also achieves $3.1\sim 3.6\times$ communication reduction.

Prompt-based methods have been successfully applied to multilingual pretrained language models for zero-shot cross-lingual understanding. However, most previous studies primarily focused on sentence-level classification tasks, and only a few considered token-level labeling tasks such as Named Entity Recognition (NER) and Part-of-Speech (POS) tagging. In this paper, we propose Token-Level Prompt Decomposition (ToPro), which facilitates the prompt-based method for token-level sequence labeling tasks. The ToPro method decomposes an input sentence into single tokens and applies one prompt template to each token. Our experiments on multilingual NER and POS tagging datasets demonstrate that ToPro-based fine-tuning outperforms Vanilla fine-tuning and Prompt-Tuning in zero-shot cross-lingual transfer, especially for languages that are typologically different from the source language English. Our method also attains state-of-the-art performance when employed with the mT5 model. Besides, our exploratory study in multilingual large language models shows that ToPro performs much better than the current in-context learning method. Overall, the performance improvements show that ToPro could potentially serve as a novel and simple benchmarking method for sequence labeling tasks.

The intricate relationship between human decision-making and emotions, particularly guilt and regret, has significant implications on behavior and well-being. Yet, these emotions subtle distinctions and interplay are often overlooked in computational models. This paper introduces a dataset tailored to dissect the relationship between guilt and regret and their unique textual markers, filling a notable gap in affective computing research. Our approach treats guilt and regret recognition as a binary classification task and employs three machine learning and six transformer-based deep learning techniques to benchmark the newly created dataset. The study further implements innovative reasoning methods like chain-of-thought and tree-of-thought to assess the models interpretive logic. The results indicate a clear performance edge for transformer-based models, achieving a 90.4% macro F1 score compared to the 85.3% scored by the best machine learning classifier, demonstrating their superior capability in distinguishing complex emotional states.

Large Language Models (LLMs) have exhibited remarkable success in long-form context comprehension tasks. However, their capacity to generate long contents, such as reports and articles, remains insufficiently explored. Current benchmarks do not adequately assess LLMs' ability to produce informative and comprehensive content, necessitating a more rigorous evaluation approach. In this study, we introduce \textsc{ProxyQA}, a framework for evaluating long-form text generation, comprising in-depth human-curated \textit{meta-questions} spanning various domains. Each meta-question contains corresponding \textit{proxy-questions} with annotated answers. LLMs are prompted to generate extensive content in response to these meta-questions. Utilizing an evaluator and incorporating generated content as background context, \textsc{ProxyQA} evaluates the quality of generated content based on the evaluator's performance in answering the \textit{proxy-questions}. We examine multiple LLMs, emphasizing \textsc{ProxyQA}'s demanding nature as a high-quality assessment tool. Human evaluation demonstrates that evaluating through \textit{proxy-questions} is a highly self-consistent and human-criteria-correlated validation method. The dataset and leaderboard will be available at \url{//github.com/Namco0816/ProxyQA}.

Large language models (LLMs) garner significant attention for their unprecedented performance, leading to an increasing number of researches evaluating LLMs. However, these evaluation benchmarks are limited to assessing the instruction-following capabilities, overlooking the fundamental abilities that emerge during the pre-training stage. Previous subjective evaluation methods mainly reply on scoring by API models. However, in the absence of references, large models have shown limited ability to discern subtle differences. To bridge the gap, we propose F-Eval, a bilingual evaluation benchmark to evaluate the fundamental abilities, including expression, commonsense and logic. The tasks in F-Eval include multi-choice objective tasks, open-ended objective tasks, reference-based subjective tasks and reference-free subjective tasks. For reference-free subjective tasks, we devise new evaluation methods, serving as alternatives to scoring by API models. We conduct evaluations on 13 advanced LLMs. Results show that our evaluation methods show higher correlation coefficients and larger distinction than other evaluators. Additionally, we discuss the influence of different model sizes, dimensions, and normalization methods. We anticipate that F-Eval will facilitate the study of LLMs' fundamental abilities.

Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

Most existing works in visual question answering (VQA) are dedicated to improving the accuracy of predicted answers, while disregarding the explanations. We argue that the explanation for an answer is of the same or even more importance compared with the answer itself, since it makes the question and answering process more understandable and traceable. To this end, we propose a new task of VQA-E (VQA with Explanation), where the computational models are required to generate an explanation with the predicted answer. We first construct a new dataset, and then frame the VQA-E problem in a multi-task learning architecture. Our VQA-E dataset is automatically derived from the VQA v2 dataset by intelligently exploiting the available captions. We have conducted a user study to validate the quality of explanations synthesized by our method. We quantitatively show that the additional supervision from explanations can not only produce insightful textual sentences to justify the answers, but also improve the performance of answer prediction. Our model outperforms the state-of-the-art methods by a clear margin on the VQA v2 dataset.

北京阿比特科技有限公司