亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Most semi-supervised learning (SSL) models entail complex structures and iterative training processes as well as face difficulties in interpreting their predictions to users. To address these issues, this paper proposes a new interpretable SSL model using the supervised and unsupervised Adaptive Resonance Theory (ART) family of networks, which is denoted as SSL-ART. Firstly, SSL-ART adopts an unsupervised fuzzy ART network to create a number of prototype nodes using unlabeled samples. Then, it leverages a supervised fuzzy ARTMAP structure to map the established prototype nodes to the target classes using labeled samples. Specifically, a one-to-many (OtM) mapping scheme is devised to associate a prototype node with more than one class label. The main advantages of SSL-ART include the capability of: (i) performing online learning, (ii) reducing the number of redundant prototype nodes through the OtM mapping scheme and minimizing the effects of noisy samples, and (iii) providing an explanation facility for users to interpret the predicted outcomes. In addition, a weighted voting strategy is introduced to form an ensemble SSL-ART model, which is denoted as WESSL-ART. Every ensemble member, i.e., SSL-ART, assigns {\color{black}a different weight} to each class based on its performance pertaining to the corresponding class. The aim is to mitigate the effects of training data sequences on all SSL-ART members and improve the overall performance of WESSL-ART. The experimental results on eighteen benchmark data sets, three artificially generated data sets, and a real-world case study indicate the benefits of the proposed SSL-ART and WESSL-ART models for tackling pattern classification problems.

相關內容

Most state-of-the-art approaches for weather and climate modeling are based on physics-informed numerical models of the atmosphere. These approaches aim to model the non-linear dynamics and complex interactions between multiple variables, which are challenging to approximate. Additionally, many such numerical models are computationally intensive, especially when modeling the atmospheric phenomenon at a fine-grained spatial and temporal resolution. Recent data-driven approaches based on machine learning instead aim to directly solve a downstream forecasting or projection task by learning a data-driven functional mapping using deep neural networks. However, these networks are trained using curated and homogeneous climate datasets for specific spatiotemporal tasks, and thus lack the generality of numerical models. We develop and demonstrate ClimaX, a flexible and generalizable deep learning model for weather and climate science that can be trained using heterogeneous datasets spanning different variables, spatio-temporal coverage, and physical groundings. ClimaX extends the Transformer architecture with novel encoding and aggregation blocks that allow effective use of available compute while maintaining general utility. ClimaX is pre-trained with a self-supervised learning objective on climate datasets derived from CMIP6. The pre-trained ClimaX can then be fine-tuned to address a breadth of climate and weather tasks, including those that involve atmospheric variables and spatio-temporal scales unseen during pretraining. Compared to existing data-driven baselines, we show that this generality in ClimaX results in superior performance on benchmarks for weather forecasting and climate projections, even when pretrained at lower resolutions and compute budgets. The source code is available at //github.com/microsoft/ClimaX.

-- A theoretical framework that subsumes conventional deterministic spiking neural networks and surrogate gradients, facilitating more efficient and effective employment of various neuromorphic hardware developments in real-world applications. -- Scalable spiking neural models that incorporate noisy neuronal dynamics for implicit regularization, improved robustness, and computational accounts of biological neural computation, revealing that unreliable neural substrates yield reliable computation and learning. Networks of spiking neurons underpin the extraordinary information-processing capabilities of the brain and have emerged as pillar models in neuromorphic intelligence. Despite extensive research on spiking neural networks (SNNs), most are established on deterministic models. Integrating noise into SNNs leads to biophysically more realistic neural dynamics and may benefit model performance. This work presents the noisy spiking neural network (NSNN) and the noise-driven learning rule (NDL) by introducing a spiking neuron model incorporating noisy neuronal dynamics. Our approach shows how noise may serve as a resource for computation and learning and theoretically provides a framework for general SNNs. We show that our method exhibits competitive performance and improved robustness against challenging perturbations than deterministic SNNs and better reproduces probabilistic neural computation in neural coding. This study offers a powerful and easy-to-use tool for machine learning, neuromorphic intelligence practitioners, and computational neuroscience researchers.

Deep learning models have demonstrated remarkable capabilities in learning complex patterns and concepts from training data. However, recent findings indicate that these models tend to rely heavily on simple and easily discernible features present in the background of images rather than the main concepts or objects they are intended to classify. This phenomenon poses a challenge to image classifiers as the crucial elements of interest in images may be overshadowed. In this paper, we propose a novel approach to address this issue and improve the learning of main concepts by image classifiers. Our central idea revolves around concurrently guiding the model's attention toward the foreground during the classification task. By emphasizing the foreground, which encapsulates the primary objects of interest, we aim to shift the focus of the model away from the dominant influence of the background. To accomplish this, we introduce a mechanism that encourages the model to allocate sufficient attention to the foreground. We investigate various strategies, including modifying the loss function or incorporating additional architectural components, to enable the classifier to effectively capture the primary concept within an image. Additionally, we explore the impact of different foreground attention mechanisms on model performance and provide insights into their effectiveness. Through extensive experimentation on benchmark datasets, we demonstrate the efficacy of our proposed approach in improving the classification accuracy of image classifiers. Our findings highlight the importance of foreground attention in enhancing model understanding and representation of the main concepts within images. The results of this study contribute to advancing the field of image classification and provide valuable insights for developing more robust and accurate deep-learning models.

Deep active learning in the presence of outlier examples poses a realistic yet challenging scenario. Acquiring unlabeled data for annotation requires a delicate balance between avoiding outliers to conserve the annotation budget and prioritizing useful inlier examples for effective training. In this work, we present an approach that leverages three highly synergistic components, which are identified as key ingredients: joint classifier training with inliers and outliers, semi-supervised learning through pseudo-labeling, and model ensembling. Our work demonstrates that ensembling significantly enhances the accuracy of pseudo-labeling and improves the quality of data acquisition. By enabling semi-supervision through the joint training process, where outliers are properly handled, we observe a substantial boost in classifier accuracy through the use of all available unlabeled examples. Notably, we reveal that the integration of joint training renders explicit outlier detection unnecessary; a conventional component for acquisition in prior work. The three key components align seamlessly with numerous existing approaches. Through empirical evaluations, we showcase that their combined use leads to a performance increase. Remarkably, despite its simplicity, our proposed approach outperforms all other methods in terms of performance. Code: //github.com/vladan-stojnic/active-outliers

A fundamental result in psycholinguistics is that less predictable words take a longer time to process. One theoretical explanation for this finding is Surprisal Theory (Hale, 2001; Levy, 2008), which quantifies a word's predictability as its surprisal, i.e. its negative log-probability given a context. While evidence supporting the predictions of Surprisal Theory have been replicated widely, most have focused on a very narrow slice of data: native English speakers reading English texts. Indeed, no comprehensive multilingual analysis exists. We address this gap in the current literature by investigating the relationship between surprisal and reading times in eleven different languages, distributed across five language families. Deriving estimates from language models trained on monolingual and multilingual corpora, we test three predictions associated with surprisal theory: (i) whether surprisal is predictive of reading times; (ii) whether expected surprisal, i.e. contextual entropy, is predictive of reading times; (iii) and whether the linking function between surprisal and reading times is linear. We find that all three predictions are borne out crosslinguistically. By focusing on a more diverse set of languages, we argue that these results offer the most robust link to-date between information theory and incremental language processing across languages.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

Text classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司