We consider the problem of online adaptive control of the linear quadratic regulator, where the true system parameters are unknown. We prove new upper and lower bounds demonstrating that the optimal regret scales as $\widetilde{\Theta}({\sqrt{d_{\mathbf{u}}^2 d_{\mathbf{x}} T}})$, where $T$ is the number of time steps, $d_{\mathbf{u}}$ is the dimension of the input space, and $d_{\mathbf{x}}$ is the dimension of the system state. Notably, our lower bounds rule out the possibility of a $\mathrm{poly}(\log{}T)$-regret algorithm, which had been conjectured due to the apparent strong convexity of the problem. Our upper bound is attained by a simple variant of $\textit{{certainty equivalent control}}$, where the learner selects control inputs according to the optimal controller for their estimate of the system while injecting exploratory random noise. While this approach was shown to achieve $\sqrt{T}$-regret by (Mania et al. 2019), we show that if the learner continually refines their estimates of the system matrices, the method attains optimal dimension dependence as well. Central to our upper and lower bounds is a new approach for controlling perturbations of Riccati equations called the $\textit{self-bounding ODE method}$, which we use to derive suboptimality bounds for the certainty equivalent controller synthesized from estimated system dynamics. This in turn enables regret upper bounds which hold for $\textit{any stabilizable instance}$ and scale with natural control-theoretic quantities.
Quantum entanglement is a crucial resource in quantum information processing. However, quantifying the entanglement required to prepare quantum states and implement quantum processes remains challenging. This paper proposes computable and faithful lower bounds for the entanglement cost of general quantum states and quantum channels. We introduce the concept of logarithmic $k$-negativity, a generalization of logarithmic negativity, to establish a general lower bound for the entanglement cost of quantum states under quantum operations that completely preserve the positivity of partial transpose (PPT). This bound is efficiently computable via semidefinite programming and is non-zero for any entangled state that is not PPT, making it faithful in the entanglement theory with non-positive partial transpose. Furthermore, we delve into specific and general examples to demonstrate the advantages of our proposed bounds compared with previously known computable ones. Notably, we affirm the irreversibility of asymptotic entanglement manipulation under PPT operations for full-rank entangled states and the irreversibility of channel manipulation for amplitude damping channels. We also establish the best-known lower bound for the entanglement cost of arbitrary dimensional isotropic states. These findings push the boundaries of understanding the structure of entanglement and the fundamental limits of entanglement manipulation.
Determining the optimal fidelity for the transmission of quantum information over noisy quantum channels is one of the central problems in quantum information theory. Recently, [Berta-Borderi-Fawzi-Scholz, Mathematical Programming, 2021] introduced an asymptotically converging semidefinite programming hierarchy of outer bounds for this quantity. However, the size of the semidefinite programs (SDPs) grows exponentially with respect to the level of the hierarchy, thus making their computation unscalable. In this work, by exploiting the symmetries in the SDP, we show that, for fixed input and output dimensions of the given quantum channel, we can compute the SDP in polynomial time in terms of the level of the hierarchy. As a direct consequence of our result, the optimal fidelity can be approximated with an accuracy of $\epsilon$ in a time that is polynomial in $1/\epsilon$.
In recent years, strong expectations have been raised for the possible power of quantum computing for solving difficult optimization problems, based on theoretical, asymptotic worst-case bounds. Can we expect this to have consequences for Linear and Integer Programming when solving instances of practically relevant size, a fundamental goal of Mathematical Programming, Operations Research and Algorithm Engineering? Answering this question faces a crucial impediment: The lack of sufficiently large quantum platforms prevents performing real-world tests for comparison with classical methods. In this paper, we present a quantum analog for classical runtime analysis when solving real-world instances of important optimization problems. To this end, we measure the expected practical performance of quantum computers by analyzing the expected gate complexity of a quantum algorithm. The lack of practical quantum platforms for experimental comparison is addressed by hybrid benchmarking, in which the algorithm is performed on a classical system, logging the expected cost of the various subroutines that are employed by the quantum versions. In particular, we provide an analysis of quantum methods for Linear Programming, for which recent work has provided asymptotic speedup through quantum subroutines for the Simplex method. We show that a practical quantum advantage for realistic problem sizes would require quantum gate operation times that are considerably below current physical limitations.
A significant bottleneck in applying current reinforcement learning algorithms to real-world scenarios is the need to reset the environment between every episode. This reset process demands substantial human intervention, making it difficult for the agent to learn continuously and autonomously. Several recent works have introduced autonomous reinforcement learning (ARL) algorithms that generate curricula for jointly training reset and forward policies. While their curricula can reduce the number of required manual resets by taking into account the agent's learning progress, they rely on task-specific knowledge, such as predefined initial states or reset reward functions. In this paper, we propose a novel ARL algorithm that can generate a curriculum adaptive to the agent's learning progress without task-specific knowledge. Our curriculum empowers the agent to autonomously reset to diverse and informative initial states. To achieve this, we introduce a success discriminator that estimates the success probability from each initial state when the agent follows the forward policy. The success discriminator is trained with relabeled transitions in a self-supervised manner. Our experimental results demonstrate that our ARL algorithm can generate an adaptive curriculum and enable the agent to efficiently bootstrap to solve sparse-reward maze navigation tasks, outperforming baselines with significantly fewer manual resets.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.
Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.