Functional data are ubiquitous in scientific modeling. For instance, quantities of interest are modeled as functions of time, space, energy, density, etc. Uncertainty quantification methods for computer models with functional response have resulted in tools for emulation, sensitivity analysis, and calibration that are widely used. However, many of these tools do not perform well when the model's parameters control both the amplitude variation of the functional output and its alignment (or phase variation). This paper introduces a framework for Bayesian model calibration when the model responses are misaligned functional data. The approach generates two types of data out of the misaligned functional responses: one that isolates the amplitude variation and one that isolates the phase variation. These two types of data are created for the computer simulation data (both of which may be emulated) and the experimental data. The calibration approach uses both types so that it seeks to match both the amplitude and phase of the experimental data. The framework is careful to respect constraints that arise especially when modeling phase variation, but also in a way that it can be done with readily available calibration software. We demonstrate the techniques on a simulated data example and on two dynamic material science problems: a strength model calibration using flyer plate experiments and an equation of state model calibration using experiments performed on the Sandia National Laboratories' Z-machine.
From simulating galaxy formation to viral transmission in a pandemic, scientific models play a pivotal role in developing scientific theories and supporting government policy decisions that affect us all. Given these critical applications, a poor modelling assumption or bug could have far-reaching consequences. However, scientific models possess several properties that make them notoriously difficult to test, including a complex input space, long execution times, and non-determinism, rendering existing testing techniques impractical. In fields such as epidemiology, where researchers seek answers to challenging causal questions, a statistical methodology known as Causal Inference has addressed similar problems, enabling the inference of causal conclusions from noisy, biased, and sparse data instead of costly experiments. This paper introduces the Causal Testing Framework: a framework that uses Causal Inference techniques to establish causal effects from existing data, enabling users to conduct software testing activities concerning the effect of a change, such as Metamorphic Testing, a posteriori. We present three case studies covering real-world scientific models, demonstrating how the Causal Testing Framework can infer metamorphic test outcomes from reused, confounded test data to provide an efficient solution for testing scientific modelling software.
Randomized controlled trials (RCTs) are the gold standard for causal inference, but they are often powered only for average effects, making estimation of heterogeneous treatment effects (HTEs) challenging. Conversely, large-scale observational studies (OS) offer a wealth of data but suffer from confounding bias. Our paper presents a novel framework to leverage OS data for enhancing the efficiency in estimating conditional average treatment effects (CATEs) from RCTs while mitigating common biases. We propose an innovative approach to combine RCTs and OS data, expanding the traditionally used control arms from external sources. The framework relaxes the typical assumption of CATE invariance across populations, acknowledging the often unaccounted systematic differences between RCT and OS participants. We demonstrate this through the special case of a linear outcome model, where the CATE is sparsely different between the two populations. The core of our framework relies on learning potential outcome means from OS data and using them as a nuisance parameter in CATE estimation from RCT data. We further illustrate through experiments that using OS findings reduces the variance of the estimated CATE from RCTs and can decrease the required sample size for detecting HTEs.
Federated learning is an approach to collaboratively training machine learning models for multiple parties that prohibit data sharing. One of the challenges in federated learning is non-IID data between clients, as a single model can not fit the data distribution for all clients. Meta-learning, such as Per-FedAvg, is introduced to cope with the challenge. Meta-learning learns shared initial parameters for all clients. Each client employs gradient descent to adapt the initialization to local data distributions quickly to realize model personalization. However, due to non-convex loss function and randomness of sampling update, meta-learning approaches have unstable goals in local adaptation for the same client. This fluctuation in different adaptation directions hinders the convergence in meta-learning. To overcome this challenge, we use the historical local adapted model to restrict the direction of the inner loop and propose an elastic-constrained method. As a result, the current round inner loop keeps historical goals and adapts to better solutions. Experiments show our method boosts meta-learning convergence and improves personalization without additional calculation and communication. Our method achieved SOTA on all metrics in three public datasets.
We initiate the study of statistical inference and A/B testing for first-price pacing equilibria (FPPE). The FPPE model captures the dynamics resulting from large-scale first-price auction markets where buyers use pacing-based budget management. Such markets arise in the context of internet advertising, where budgets are prevalent. We propose a statistical framework for the FPPE model, in which a limit FPPE with a continuum of items models the long-run steady-state behavior of the auction platform, and an observable FPPE consisting of a finite number of items provides the data to estimate primitives of the limit FPPE, such as revenue, Nash social welfare (a fair metric of efficiency), and other parameters of interest. We develop central limit theorems and asymptotically valid confidence intervals. Furthermore, we establish the asymptotic local minimax optimality of our estimators. We then show that the theory can be used for conducting statistically valid A/B testing on auction platforms. Numerical simulations verify our central limit theorems, and empirical coverage rates for our confidence intervals agree with our theory.
Large language models (LLMs) have demonstrated remarkable capabilities out of box for a wide range of applications, yet accuracy still remains a major growth area, especially in mission-critical domains such as biomedicine. An effective method to calibrate the confidence level on LLM responses is essential to automatically detect errors and facilitate human-in-the-loop verification. An important source of calibration signals stems from expert-stipulated programmatic supervision, which is often available at low cost but has its own limitations such as noise and coverage. In this paper, we introduce a Pareto optimal self-supervision framework that can leverage available programmatic supervision to systematically calibrate LLM responses by producing a risk score for every response, without any additional manual efforts. This is accomplished by learning a harmonizer model to align LLM output with other available supervision sources, which would assign higher risk scores to more uncertain LLM responses and facilitate error correction. Experiments on standard relation extraction tasks in biomedical and general domains demonstrate the promise of this approach, with our proposed risk scores highly correlated with the real error rate of LLMs. For the most uncertain test instances, dynamic prompting based on our proposed risk scores results in significant accuracy improvement for off-the-shelf LLMs, boosting GPT-3 results past state-of-the-art (SOTA) weak supervision and GPT-4 results past SOTA supervised results on challenging evaluation datasets.
In this study, we propose a novel surrogate modelling approach to efficiently and accurately approximate the response of complex dynamical systems driven by time-varying exogenous excitations over extended time periods. Our approach, that we name \emph{manifold nonlinear autoregressive modelling with exogenous input} (mNARX), involves constructing a problem-specific exogenous input manifold that is optimal for constructing autoregressive surrogates. The manifold, which forms the core of mNARX, is constructed incrementally by incorporating the physics of the system, as well as prior expert- and domain- knowledge. Because mNARX decomposes the full problem into a series of smaller sub-problems, each with a lower complexity than the original, it scales well with the complexity of the problem, both in terms of training and evaluation costs of the final surrogate. Furthermore, mNARX synergizes well with traditional dimensionality reduction techniques, making it highly suitable for modelling dynamical systems with high-dimensional exogenous inputs, a class of problems that is typically challenging to solve.Since domain knowledge is particularly abundant in physical systems, such as those found in engineering applications, mNARX is well suited for these applications. We demonstrate that mNARX outperforms traditional autoregressive surrogates in predicting the response of a classical coupled spring-mass system excited by a one-dimensional random excitation. Additionally, we show that mNARX is well suited for emulating very high-dimensional time- and state-dependent systems, even when affected by active controllers, by surrogating the dynamics of a realistic aero-servo-elastic onshore wind turbine simulator. In general, our results demonstrate that mNARX offers promising prospects for modelling complex dynamical systems, in terms of accuracy and efficiency.
Causal discovery and causal reasoning are classically treated as separate and consecutive tasks: one first infers the causal graph, and then uses it to estimate causal effects of interventions. However, such a two-stage approach is uneconomical, especially in terms of actively collected interventional data, since the causal query of interest may not require a fully-specified causal model. From a Bayesian perspective, it is also unnatural, since a causal query (e.g., the causal graph or some causal effect) can be viewed as a latent quantity subject to posterior inference -- other unobserved quantities that are not of direct interest (e.g., the full causal model) ought to be marginalized out in this process and contribute to our epistemic uncertainty. In this work, we propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning, which jointly infers a posterior over causal models and queries of interest. In our approach to ABCI, we focus on the class of causally-sufficient, nonlinear additive noise models, which we model using Gaussian processes. We sequentially design experiments that are maximally informative about our target causal query, collect the corresponding interventional data, and update our beliefs to choose the next experiment. Through simulations, we demonstrate that our approach is more data-efficient than several baselines that only focus on learning the full causal graph. This allows us to accurately learn downstream causal queries from fewer samples while providing well-calibrated uncertainty estimates for the quantities of interest.
Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.
The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.