Network structure evolves with time in the real world, and the discovery of changing communities in dynamic networks is an important research topic that poses challenging tasks. Most existing methods assume that no significant change in the network occurs; namely, the difference between adjacent snapshots is slight. However, great change exists in the real world usually. The great change in the network will result in the community detection algorithms are difficulty obtaining valuable information from the previous snapshot, leading to negative transfer for the next time steps. This paper focuses on dynamic community detection with substantial changes by integrating higher-order knowledge from the previous snapshots to aid the subsequent snapshots. Moreover, to improve search efficiency, a higher-order knowledge transfer strategy is designed to determine first-order and higher-order knowledge by detecting the similarity of the adjacency matrix of snapshots. In this way, our proposal can better keep the advantages of previous community detection results and transfer them to the next task. We conduct the experiments on four real-world networks, including the networks with great or minor changes. Experimental results in the low-similarity datasets demonstrate that higher-order knowledge is more valuable than first-order knowledge when the network changes significantly and keeps the advantage even if handling the high-similarity datasets. Our proposal can also guide other dynamic optimization problems with great changes.
Anomaly detection is critical for finding suspicious behavior in innumerable systems. We need to detect anomalies in real-time, i.e. determine if an incoming entity is anomalous or not, as soon as we receive it, to minimize the effects of malicious activities and start recovery as soon as possible. Therefore, online algorithms that can detect anomalies in a streaming manner are essential. We first propose MIDAS which uses a count-min sketch to detect anomalous edges in dynamic graphs in an online manner, using constant time and memory. We then propose two variants, MIDAS-R which incorporates temporal and spatial relations, and MIDAS-F which aims to filter away anomalous edges to prevent them from negatively affecting the internal data structures. We then extend the count-min sketch to a Higher-Order sketch to capture complex relations in graph data, and to reduce detecting suspicious dense subgraph problem to finding a dense submatrix in constant time. Using this sketch, we propose four streaming methods to detect edge and subgraph anomalies. Next, we broaden the graph setting to multi-aspect data. We propose MStream which detects explainable anomalies in multi-aspect data streams. We further propose MStream-PCA, MStream-IB, and MStream-AE to incorporate correlation between features. Finally, we consider multi-dimensional data streams with concept drift and propose MemStream. MemStream leverages the power of a denoising autoencoder to learn representations and a memory module to learn the dynamically changing trend in data without the need for labels. We prove a theoretical bound on the size of memory for effective drift handling. In addition, we allow quick retraining when the arriving stream becomes sufficiently different from the training data. Furthermore, MemStream makes use of two architecture design choices to be robust to memory poisoning.
Modern video streaming services require quality assurance of the presented audiovisual material. Quality assurance mechanisms allow streaming platforms to provide quality levels that are considered sufficient to yield user satisfaction, with the least possible amount of data transferred. A variety of measures and approaches have been developed to control video quality, e.g., by adapting it to network conditions. These include objective matrices of the quality and thresholds identified by means of subjective perceptual judgments. The former group of matrices has recently gained the attention of (multi)media researchers. They call this area of study ``Quality of Experience'' (QoE). In this paper, we present a review of QoE's theoretical models together with a discussion of their properties and implications for the field. We argue that most of them represent the bottom-up approach to modeling. Such models focus on describing as many variables as possible, but with a limited ability to investigate the causal relationship between them; therefore, the applicability of the findings in practice is limited. To advance the field, we therefore propose a structural, top-down model of video QoE that describes causal relationships among variables. We hope that our framework will facilitate designing comparable experiments in the domain.
The tilted viewing nature of the off-nadir aerial images brings severe challenges to the building change detection (BCD) problem: the mismatch of the nearby buildings and the semantic ambiguity of the building facades. To tackle these challenges, we present a multi-task guided change detection network model, named as MTGCD-Net. The proposed model approaches the specific BCD problem by designing three auxiliary tasks, including: (1) a pixel-wise classification task to predict the roofs and facades of buildings; (2) an auxiliary task for learning the roof-to-footprint offsets of each building to account for the misalignment between building roof instances; and (3) an auxiliary task for learning the identical roof matching flow between bi-temporal aerial images to tackle the building roof mismatch problem. These auxiliary tasks provide indispensable and complementary building parsing and matching information. The predictions of the auxiliary tasks are finally fused to the main building change detection branch with a multi-modal distillation module. To train and test models for the BCD problem with off-nadir aerial images, we create a new benchmark dataset, named BANDON. Extensive experiments demonstrate that our model achieves superior performance over the previous state-of-the-art competitors.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Deep Learning has revolutionized the fields of computer vision, natural language understanding, speech recognition, information retrieval and more. However, with the progressive improvements in deep learning models, their number of parameters, latency, resources required to train, etc. have all have increased significantly. Consequently, it has become important to pay attention to these footprint metrics of a model as well, not just its quality. We present and motivate the problem of efficiency in deep learning, followed by a thorough survey of the five core areas of model efficiency (spanning modeling techniques, infrastructure, and hardware) and the seminal work there. We also present an experiment-based guide along with code, for practitioners to optimize their model training and deployment. We believe this is the first comprehensive survey in the efficient deep learning space that covers the landscape of model efficiency from modeling techniques to hardware support. Our hope is that this survey would provide the reader with the mental model and the necessary understanding of the field to apply generic efficiency techniques to immediately get significant improvements, and also equip them with ideas for further research and experimentation to achieve additional gains.
A community reveals the features and connections of its members that are different from those in other communities in a network. Detecting communities is of great significance in network analysis. Despite the classical spectral clustering and statistical inference methods, we notice a significant development of deep learning techniques for community detection in recent years with their advantages in handling high dimensional network data. Hence, a comprehensive overview of community detection's latest progress through deep learning is timely to both academics and practitioners. This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods, including deep learning-based models upon deep neural networks, deep nonnegative matrix factorization and deep sparse filtering. The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders. The survey also summarizes the popular benchmark data sets, model evaluation metrics, and open-source implementations to address experimentation settings. We then discuss the practical applications of community detection in various domains and point to implementation scenarios. Finally, we outline future directions by suggesting challenging topics in this fast-growing deep learning field.
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural language processing, we propose a pretext task named random query patch detection to unsupervisedly pre-train DETR (UP-DETR) for object detection. Specifically, we randomly crop patches from the given image and then feed them as queries to the decoder. The model is pre-trained to detect these query patches from the original image. During the pre-training, we address two critical issues: multi-task learning and multi-query localization. (1) To trade-off multi-task learning of classification and localization in the pretext task, we freeze the CNN backbone and propose a patch feature reconstruction branch which is jointly optimized with patch detection. (2) To perform multi-query localization, we introduce UP-DETR from single-query patch and extend it to multi-query patches with object query shuffle and attention mask. In our experiments, UP-DETR significantly boosts the performance of DETR with faster convergence and higher precision on PASCAL VOC and COCO datasets. The code will be available soon.
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs, respectively. In the current literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
We propose the idea of transferring common-sense knowledge from source categories to target categories for scalable object detection. In our setting, the training data for the source categories have bounding box annotations, while those for the target categories only have image-level annotations. Current state-of-the-art approaches focus on image-level visual or semantic similarity to adapt a detector trained on the source categories to the new target categories. In contrast, our key idea is to (i) use similarity not at image-level, but rather at region-level, as well as (ii) leverage richer common-sense (based on attribute, spatial, etc.,) to guide the algorithm towards learning the correct detections. We acquire such common-sense cues automatically from readily-available knowledge bases without any extra human effort. On the challenging MS COCO dataset, we find that using common-sense knowledge substantially improves detection performance over existing transfer-learning baselines.