亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph Neural Networks (GNNs) have improved unsupervised community detection of clustered nodes due to their ability to encode the dual dimensionality of the connectivity and feature information spaces of graphs. Identifying the latent communities has many practical applications from social networks to genomics. Current benchmarks of real world performance are confusing due to the variety of decisions influencing the evaluation of GNNs at this task. To address this, we propose a framework to establish a common evaluation protocol. We motivate and justify it by demonstrating the differences with and without the protocol. The W Randomness Coefficient is a metric proposed for assessing the consistency of algorithm rankings to quantify the reliability of results under the presence of randomness. We find that by ensuring the same evaluation criteria is followed, there may be significant differences from the reported performance of methods at this task, but a more complete evaluation and comparison of methods is possible.

相關內容

在(zai)網(wang)絡中發現(xian)(xian)社(she)(she)(she)區(qu)(稱為社(she)(she)(she)區(qu)檢測(ce)/發現(xian)(xian))是網(wang)絡科學中的一個基本問(wen)(wen)題(ti),在(zai)過去的幾十年中引起(qi)了很多關(guan)注。 近(jin)年來,隨著對(dui)大(da)數據的大(da)量研究,另一個相關(guan)但又不同(tong)的問(wen)(wen)題(ti)(稱為社(she)(she)(she)區(qu)搜索)旨在(zai)尋找包含查詢節點的最有可能的社(she)(she)(she)區(qu),這(zhe)已引起(qi)了學術界(jie)和工(gong)業界(jie)的廣泛關(guan)注,它(ta)是社(she)(she)(she)區(qu)檢測(ce)問(wen)(wen)題(ti)的依賴查詢的變(bian)體。

With the increase of the number of elderly people living alone around the world, there is a growing demand for sensor-based detection of anomalous behaviors. Although smart homes with ambient sensors could be useful for detecting such anomalies, there is a problem of lack of sufficient real data for developing detection algorithms. For coping with this problem, several sensor data simulators have been proposed, but they have not been able to model appropriately the long-term transitions and correlations between anomalies that exist in reality. In this paper, therefore, we propose a novel sensor data simulator that can model these factors in generation of sensor data. Anomalies considered in this study were classified into three types of \textit{state anomalies}, \textit{activity anomalies}, and \textit{moving anomalies}. The simulator produces 10 years data in 100 min. including six anomalies, two for each type. Numerical evaluations show that this simulator is superior to the past simulators in the sense that it simulates well day-to-day variations of real data.

Non-terrestrial networks (NTNs) will complement terrestrial networks (TNs) in 5G and beyond, which can be attributed to recent deployment and standardization activities. Maximizing the efficiency of NTN communications is critical to unlock its full potential and reap its numerous benefits. One method to make communications more efficient is by the usage of multi-connectivity (MC), which allows a user to connect to multiple base stations simultaneously. It is standardized and widely used for TNs, but for MC to be used in the NTN environment, several challenges must be overcome. In this article, challenges related to MC in NTNs are discussed, and solutions to the identified challenges are proposed.

Large Language Models (LLMs) exhibit a unique phenomenon known as emergent abilities, demonstrating adeptness across numerous tasks, from text summarization to code generation. While these abilities open up novel avenues in software design and crafting, their incorporation presents substantial challenges. Developers face decisions regarding the use of LLMs for directly performing tasks within applications as well as for generating and executing code to accomplish these tasks. Moreover, effective prompt design becomes a critical concern, given the necessity of extracting data from natural language outputs. To address these complexities, this paper introduces AskIt, a domain-specific language (DSL) specifically designed for LLMs. AskIt simplifies LLM integration by providing a unified interface that not only allows for direct task execution using LLMs but also supports the entire cycle of code generation and execution. This dual capability is achieved through (1) type-guided output control, (2) template-based function definitions, and (3) prompt generation for both usage modes. Our evaluations underscore AskIt's effectiveness. Across 50 tasks, AskIt generated concise prompts, achieving a 16.14 % reduction in prompt length compared to benchmarks. Additionally, by enabling a seamless transition between using LLMs directly in applications and for generating code, AskIt achieved significant efficiency improvements, as observed in our GSM8K benchmark experiments. The implementations of AskIt in TypeScript and Python are available at //github.com/katsumiok/ts-askit and //github.com/katsumiok/pyaskit, respectively.

A popular framework for enforcing safe actions in Reinforcement Learning (RL) is Constrained RL, where trajectory based constraints on expected cost (or other cost measures) are employed to enforce safety and more importantly these constraints are enforced while maximizing expected reward. Most recent approaches for solving Constrained RL convert the trajectory based cost constraint into a surrogate problem that can be solved using minor modifications to RL methods. A key drawback with such approaches is an over or underestimation of the cost constraint at each state. Therefore, we provide an approach that does not modify the trajectory based cost constraint and instead imitates ``good'' trajectories and avoids ``bad'' trajectories generated from incrementally improving policies. We employ an oracle that utilizes a reward threshold (which is varied with learning) and the overall cost constraint to label trajectories as ``good'' or ``bad''. A key advantage of our approach is that we are able to work from any starting policy or set of trajectories and improve on it. In an exhaustive set of experiments, we demonstrate that our approach is able to outperform top benchmark approaches for solving Constrained RL problems, with respect to expected cost, CVaR cost, or even unknown cost constraints.

Constraint Optimization Problems (COP) pose intricate challenges in combinatorial problems usually addressed through Branch and Bound (B\&B) methods, which involve maintaining priority queues and iteratively selecting branches to search for solutions. However, conventional approaches take a considerable amount of time to find optimal solutions, and it is also crucial to quickly identify a near-optimal feasible solution in a shorter time. In this paper, we aim to investigate the effectiveness of employing a depth-first search algorithm for solving COP, specifically focusing on identifying optimal or near-optimal solutions within top $n$ solutions. Hence, we propose a novel heuristic neural network algorithm based on MCTS, which, by simultaneously conducting search and training, enables the neural network to effectively serve as a heuristic during Backtracking. Furthermore, our approach incorporates encoding COP problems and utilizing graph neural networks to aggregate information about variables and constraints, offering more appropriate variables for assignments. Experimental results on stochastic COP instances demonstrate that our method identifies feasible solutions with a gap of less than 17.63% within the initial 5 feasible solutions. Moreover, when applied to attendant Constraint Satisfaction Problem (CSP) instances, our method exhibits a remarkable reduction of less than 5% in searching nodes compared to state-of-the-art approaches.

Teleoperation of mobile manipulators within a home environment can significantly enhance the independence of individuals with severe motor impairments, allowing them to regain the ability to perform self-care and household tasks. There is a critical need for novel teleoperation interfaces to offer effective alternatives for individuals with impairments who may encounter challenges in using existing interfaces due to physical limitations. In this work, we iterate on one such interface, HAT (Head-Worn Assistive Teleoperation), an inertial-based wearable integrated into any head-worn garment. We evaluate HAT through a 7-day in-home study with Henry Evans, a non-speaking individual with quadriplegia who has participated extensively in assistive robotics studies. We additionally evaluate HAT with a proposed shared control method for mobile manipulators termed Driver Assistance and demonstrate how the interface generalizes to other physical devices and contexts. Our results show that HAT is a strong teleoperation interface across key metrics including efficiency, errors, learning curve, and workload. Code and videos are located on our project website.

Advanced Air Mobility (AAM) is an emerging transportation system that will enable the safe and efficient low altitude operations and applications of unmanned aircraft (e.g., passenger transportation and cargo delivery) in the national airspace. This system is currently under active research and development by NASA in collaboration with FAA, other federal partner agencies, industry, and academia to develop its infrastructure, information architecture, software functions, concepts of operation, operations management tools and other functional components. Existing studies have, however, not thoroughly analyzed the net positive impact of AAM on society and environment to justify investments in its infrastructure and implementation. In this work, we fill this gap by evaluating the non-monetary social impact of AAM in the state of Ohio for passengers, patients, farmers, logistics companies and their customers and bridge inspection entities, as well as its environmental impact, by conducting a thorough data-driven quantitative cost-benefit analysis of AAM from the perspective of the state government. To this end, the most relevant and significant benefit and cost factors are identified, monetized, and estimated. Existing ground transportation for the movement of passengers and goods within and across urban areas is considered as the base case. The findings demonstrate that AAM's benefits are large and varied, far outweighing its costs. Insights on these benefits can help gain community acceptance of AAM, which is critical for successful implementation of AAM. The findings support decision-making for policymakers and provide justification for investments in AAM infrastructure by the government and private sector.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

The Pretrained Foundation Models (PFMs) are regarded as the foundation for various downstream tasks with different data modalities. A pretrained foundation model, such as BERT, GPT-3, MAE, DALLE-E, and ChatGPT, is trained on large-scale data which provides a reasonable parameter initialization for a wide range of downstream applications. The idea of pretraining behind PFMs plays an important role in the application of large models. Different from previous methods that apply convolution and recurrent modules for feature extractions, the generative pre-training (GPT) method applies Transformer as the feature extractor and is trained on large datasets with an autoregressive paradigm. Similarly, the BERT apples transformers to train on large datasets as a contextual language model. Recently, the ChatGPT shows promising success on large language models, which applies an autoregressive language model with zero shot or few show prompting. With the extraordinary success of PFMs, AI has made waves in a variety of fields over the past few years. Considerable methods, datasets, and evaluation metrics have been proposed in the literature, the need is raising for an updated survey. This study provides a comprehensive review of recent research advancements, current and future challenges, and opportunities for PFMs in text, image, graph, as well as other data modalities. We first review the basic components and existing pretraining in natural language processing, computer vision, and graph learning. We then discuss other advanced PFMs for other data modalities and unified PFMs considering the data quality and quantity. Besides, we discuss relevant research about the fundamentals of the PFM, including model efficiency and compression, security, and privacy. Finally, we lay out key implications, future research directions, challenges, and open problems.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

北京阿比特科技有限公司