We study three systems of equations, together with a way to count the number of solutions. One of the results was used in the recent computation of D(9), the others have potential to speed up existing techniques in the future.
In high-temperature plasma physics, a strong magnetic field is usually used to confine charged particles. Therefore, for studying the classical mathematical models of the physical problems it needs to consider the effect of external magnetic fields. One of the important model equations in plasma is the Vlasov-Poisson equation with an external magnetic field. This equation usually has multi-scale characteristics and rich physical properties, thus it is very important and meaningful to construct numerical methods that can maintain the physical properties inherited by the original systems over long time. This paper extends the corresponding theory in Cartesian coordinates to general orthogonal curvilinear coordinates, and proves that a Poisson-bracket structure can still be obtained after applying the corresponding finite element discretization. However, the Hamiltonian systems in the new coordinate systems generally cannot be decomposed into sub-systems that can be solved accurately, so it is impossible to use the splitting methods to construct the corresponding geometric integrators. Therefore, this paper proposes a semi-implicit method for strong magnetic fields and analyzes the asymptotic stability of this method.
In this work we study the numerical approximation of a class of ergodic Backward Stochastic Differential Equations. These equations are formulated in an infinite horizon framework and provide a probabilistic representation for elliptic Partial Differential Equations of ergodic type. In order to build our numerical scheme, we put forward a new representation of the PDE solution by using a classical probabilistic representation of the gradient. Then, based on this representation, we propose a fully implementable numerical scheme using a Picard iteration procedure, a grid space discretization and a Monte-Carlo approximation. Up to a limiting technical condition that guarantee the contraction of the Picard procedure, we obtain an upper bound for the numerical error. We also provide some numerical experiments that show the efficiency of this approach for small dimensions.
The rapid pace of development in quantum computing technology has sparked a proliferation of benchmarks for assessing the performance of quantum computing hardware and software. Good benchmarks empower scientists, engineers, programmers, and users to understand a computing system's power, but bad benchmarks can misdirect research and inhibit progress. In this Perspective, we survey the science of quantum computer benchmarking. We discuss the role of benchmarks and benchmarking, and how good benchmarks can drive and measure progress towards the long-term goal of useful quantum computations, i.e., "quantum utility". We explain how different kinds of benchmark quantify the performance of different parts of a quantum computer, we survey existing benchmarks, critically discuss recent trends in benchmarking, and highlight important open research questions in this field.
We study the numerical approximation of the stochastic heat equation with a distributional reaction term. Under a condition on the Besov regularity of the reaction term, it was proven recently that a strong solution exists and is unique in the pathwise sense, in a class of H\"older continuous processes. For a suitable choice of sequence $(b^k)_{k\in \mathbb{N}}$ approximating $b$, we prove that the error between the solution $u$ of the SPDE with reaction term $b$ and its tamed Euler finite-difference scheme with mollified drift $b^k$, converges to $0$ in $L^m(\Omega)$ with a rate that depends on the Besov regularity of $b$. In particular, one can consider two interesting cases: first, even when $b$ is only a (finite) measure, a rate of convergence is obtained. On the other hand, when $b$ is a bounded measurable function, the (almost) optimal rate of convergence $(\frac{1}{2}-\varepsilon)$-in space and $(\frac{1}{4}-\varepsilon)$-in time is achieved. Stochastic sewing techniques are used in the proofs, in particular to deduce new regularising properties of the discrete Ornstein-Uhlenbeck process.
Motivated by the recent successful application of physics-informed neural networks (PINNs) to solve Boltzmann-type equations [S. Jin, Z. Ma, and K. Wu, J. Sci. Comput., 94 (2023), pp. 57], we provide a rigorous error analysis for PINNs in approximating the solution of the Boltzmann equation near a global Maxwellian. The challenge arises from the nonlocal quadratic interaction term defined in the unbounded domain of velocity space. Analyzing this term on an unbounded domain requires the inclusion of a truncation function, which demands delicate analysis techniques. As a generalization of this analysis, we also provide proof of the asymptotic preserving property when using micro-macro decomposition-based neural networks.
Drawing from the theory of stochastic differential equations, we introduce a novel sampling method for known distributions and a new algorithm for diffusion generative models with unknown distributions. Our approach is inspired by the concept of the reverse diffusion process, widely adopted in diffusion generative models. Additionally, we derive the explicit convergence rate based on the smooth ODE flow. For diffusion generative models and sampling, we establish a dimension-free particle approximation convergence result. Numerical experiments demonstrate the effectiveness of our method. Notably, unlike the traditional Langevin method, our sampling method does not require any regularity assumptions about the density function of the target distribution. Furthermore, we also apply our method to optimization problems.
We prove that random quantum circuits on any geometry, including a 1D line, can form approximate unitary designs over $n$ qubits in $\log n$ depth. In a similar manner, we construct pseudorandom unitaries (PRUs) in 1D circuits in $\text{poly} \log n $ depth, and in all-to-all-connected circuits in $\text{poly} \log \log n $ depth. In all three cases, the $n$ dependence is optimal and improves exponentially over known results. These shallow quantum circuits have low complexity and create only short-range entanglement, yet are indistinguishable from unitaries with exponential complexity. Our construction glues local random unitaries on $\log n$-sized or $\text{poly} \log n$-sized patches of qubits to form a global random unitary on all $n$ qubits. In the case of designs, the local unitaries are drawn from existing constructions of approximate unitary $k$-designs, and hence also inherit an optimal scaling in $k$. In the case of PRUs, the local unitaries are drawn from existing unitary ensembles conjectured to form PRUs. Applications of our results include proving that classical shadows with 1D log-depth Clifford circuits are as powerful as those with deep circuits, demonstrating superpolynomial quantum advantage in learning low-complexity physical systems, and establishing quantum hardness for recognizing phases of matter with topological order.
We study the iterative methods for large moment systems derived from the linearized Boltzmann equation. By Fourier analysis, it is shown that the direct application of the block symmetric Gauss-Seidel (BSGS) method has slower convergence for smaller Knudsen numbers. Better convergence rates for dense flows are then achieved by coupling the BSGS method with the micro-macro decomposition, which treats the moment equations as a coupled system with a microscopic part and a macroscopic part. Since the macroscopic part contains only a small number of equations, it can be solved accurately during the iteration with a relatively small computational cost, which accelerates the overall iteration. The method is further generalized to the multiscale decomposition which splits the moment system into many subsystems with different orders of magnitude. Both one- and two-dimensional numerical tests are carried out to examine the performances of these methods. Possible issues regarding the efficiency and convergence are discussed in the conclusion.
In this work we propose a discretization of the second boundary condition for the Monge-Ampere equation arising in geometric optics and optimal transport. The discretization we propose is the natural generalization of the popular Oliker-Prussner method proposed in 1988. For the discretization of the differential operator, we use a discrete analogue of the subdifferential. Existence, unicity and stability of the solutions to the discrete problem are established. Convergence results to the continuous problem are given.
In the finite difference approximation of the fractional Laplacian the stiffness matrix is typically dense and needs to be approximated numerically. The effect of the accuracy in approximating the stiffness matrix on the accuracy in the whole computation is analyzed and shown to be significant. Four such approximations are discussed. While they are shown to work well with the recently developed grid-over finite difference method (GoFD) for the numerical solution of boundary value problems of the fractional Laplacian, they differ in accuracy, economics to compute, performance of preconditioning, and asymptotic decay away from the diagonal line. In addition, two preconditioners based on sparse and circulant matrices are discussed for the iterative solution of linear systems associated with the stiffness matrix. Numerical results in two and three dimensions are presented.