亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The emergence of low precision floating-point arithmetic in computer hardware has led to a resurgence of interest in the use of mixed precision numerical linear algebra. For linear systems of equations, there has been renewed enthusiasm for mixed precision variants of iterative refinement. We consider the iterative solution of large sparse systems using incomplete factorization preconditioners. The focus is on the robust computation of such preconditioners in half precision arithmetic and employing them to solve symmetric positive definite systems to higher precision accuracy; however, the proposed ideas can be applied more generally. Even for well-conditioned problems, incomplete factorizations can break down when small entries occur on the diagonal during the factorization. When using half precision arithmetic, overflows are an additional possible source of breakdown. We examine how breakdowns can be avoided and we implement our strategies within new half precision Fortran sparse incomplete Cholesky factorization software. Results are reported for a range of problems from practical applications. These demonstrate that, even for highly ill-conditioned problems, half precision preconditioners can potentially replace double precision preconditioners, although unsurprisingly this may be at the cost of additional iterations of a Krylov solver.

相關內容

In the era of Internet of Things, how to develop a smart sensor system with sustainable power supply, easy deployment and flexible use has become a difficult problem to be solved. The traditional power supply has problems such as frequent replacement or charging when in use, which limits the development of wearable devices. The contact-to-separate friction nanogenerator (TENG) was prepared by using polychotomy thy lene (PTFE) and aluminum (AI) foils. Human motion energy was collected by human body arrangement, and human motion posture was monitored according to the changes of output electrical signals. In 2012, Academician Wang Zhong lin and his team invented the triboelectric nanogenerator (TENG), which uses Maxwell displacement current as a driving force to directly convert mechanical stimuli into electrical signals, so it can be used as a self-driven sensor. Teng-based sensors have the advantages of simple structure and high instantaneous power density, which provides an important means for building intelligent sensor systems. At the same time, machine learning, as a technology with low cost, short development cycle, strong data processing ability and prediction ability, has a significant effect on the processing of a large number of electrical signals generated by TENG, and the combination with TENG sensors will promote the rapid development of intelligent sensor networks in the future. Therefore, this paper is based on the intelligent sound monitoring and recognition system of TENG, which has good sound recognition capability, and aims to evaluate the feasibility of the sound perception module architecture in ubiquitous sensor networks.

In recent years, the fervent demand for computational power across various domains has prompted hardware manufacturers to introduce specialized computing hardware aimed at enhancing computational capabilities. Particularly, the utilization of tensor hardware supporting low precision has gained increasing prominence in scientific research. However, the use of low-precision tensor hardware for computational acceleration often introduces errors, posing a fundamental challenge of simultaneously achieving effective acceleration while maintaining computational accuracy. This paper proposes improvements in the methodology by incorporating low-precision quantization and employing a residual matrix for error correction and combines vector-wise quantization method.. The key innovation lies in the use of sparse matrices instead of dense matrices when compensating for errors with a residual matrix. By focusing solely on values that may significantly impact relative errors under a specified threshold, this approach aims to control quantization errors while reducing computational complexity. Experimental results demonstrate that this method can effectively control the quantization error while maintaining high acceleration effect.The improved algorithm on the CPU can achieve up to 15\% accuracy improvement while 1.46 times speed improvement.

Generative models for multimodal data permit the identification of latent factors that may be associated with important determinants of observed data heterogeneity. Common or shared factors could be important for explaining variation across modalities whereas other factors may be private and important only for the explanation of a single modality. Multimodal Variational Autoencoders, such as MVAE and MMVAE, are a natural choice for inferring those underlying latent factors and separating shared variation from private. In this work, we investigate their capability to reliably perform this disentanglement. In particular, we highlight a challenging problem setting where modality-specific variation dominates the shared signal. Taking a cross-modal prediction perspective, we demonstrate limitations of existing models, and propose a modification how to make them more robust to modality-specific variation. Our findings are supported by experiments on synthetic as well as various real-world multi-omics data sets.

Electrical circuits are present in a variety of technologies, making their design an important part of computer aided engineering. The growing number of parameters that affect the final design leads to a need for new approaches to quantify their impact. Machine learning may play a key role in this regard, however current approaches often make suboptimal use of existing knowledge about the system at hand. In terms of circuits, their description via modified nodal analysis is well-understood. This particular formulation leads to systems of differential-algebraic equations (DAEs) which bring with them a number of peculiarities, e.g. hidden constraints that the solution needs to fulfill. We use the recently introduced dissection index that can decouple a given system of DAEs into ordinary differential equations, only depending on differential variables, and purely algebraic equations, that describe the relations between differential and algebraic variables. The idea is to then only learn the differential variables and reconstruct the algebraic ones using the relations from the decoupling. This approach guarantees that the algebraic constraints are fulfilled up to the accuracy of the nonlinear system solver, and it may also reduce the learning effort as only the differential variables need to be learned.

The sparsity-ranked lasso (SRL) has been developed for model selection and estimation in the presence of interactions and polynomials. The main tenet of the SRL is that an algorithm should be more skeptical of higher-order polynomials and interactions *a priori* compared to main effects, and hence the inclusion of these more complex terms should require a higher level of evidence. In time series, the same idea of ranked prior skepticism can be applied to the possibly seasonal autoregressive (AR) structure of the series during the model fitting process, becoming especially useful in settings with uncertain or multiple modes of seasonality. The SRL can naturally incorporate exogenous variables, with streamlined options for inference and/or feature selection. The fitting process is quick even for large series with a high-dimensional feature set. In this work, we discuss both the formulation of this procedure and the software we have developed for its implementation via the **fastTS** R package. We explore the performance of our SRL-based approach in a novel application involving the autoregressive modeling of hourly emergency room arrivals at the University of Iowa Hospitals and Clinics. We find that the SRL is considerably faster than its competitors, while producing more accurate predictions.

In the past five years, the use of generative and foundational AI systems has greatly improved the decoding of brain activity. Visual perception, in particular, can now be decoded from functional Magnetic Resonance Imaging (fMRI) with remarkable fidelity. This neuroimaging technique, however, suffers from a limited temporal resolution ($\approx$0.5 Hz) and thus fundamentally constrains its real-time usage. Here, we propose an alternative approach based on magnetoencephalography (MEG), a neuroimaging device capable of measuring brain activity with high temporal resolution ($\approx$5,000 Hz). For this, we develop an MEG decoding model trained with both contrastive and regression objectives and consisting of three modules: i) pretrained embeddings obtained from the image, ii) an MEG module trained end-to-end and iii) a pretrained image generator. Our results are threefold: Firstly, our MEG decoder shows a 7X improvement of image-retrieval over classic linear decoders. Second, late brain responses to images are best decoded with DINOv2, a recent foundational image model. Third, image retrievals and generations both suggest that high-level visual features can be decoded from MEG signals, although the same approach applied to 7T fMRI also recovers better low-level features. Overall, these results, while preliminary, provide an important step towards the decoding -- in real-time -- of the visual processes continuously unfolding within the human brain.

In algorithms for solving optimization problems constrained to a smooth manifold, retractions are a well-established tool to ensure that the iterates stay on the manifold. More recently, it has been demonstrated that retractions are a useful concept for other computational tasks on manifold as well, including interpolation tasks. In this work, we consider the application of retractions to the numerical integration of differential equations on fixed-rank matrix manifolds. This is closely related to dynamical low-rank approximation (DLRA) techniques. In fact, any retraction leads to a numerical integrator and, vice versa, certain DLRA techniques bear a direct relation with retractions. As an example for the latter, we introduce a new retraction, called KLS retraction, that is derived from the so-called unconventional integrator for DLRA. We also illustrate how retractions can be used to recover known DLRA techniques and to design new ones. In particular, this work introduces two novel numerical integration schemes that apply to differential equations on general manifolds: the accelerated forward Euler (AFE) method and the Projected Ralston--Hermite (PRH) method. Both methods build on retractions by using them as a tool for approximating curves on manifolds. The two methods are proven to have local truncation error of order three. Numerical experiments on classical DLRA examples highlight the advantages and shortcomings of these new methods.

We define an asymptotically normal wavelet-based strongly consistent estimator for the Hurst parameter of any Hermite processes. This estimator is obtained by considering a modified wavelet variation in which coefficients are wisely chosen to be, up to negligeable remainders, independent. We use Stein-Malliavin calculus to prove that this wavelet variation satisfies a multidimensional Central Limit Theorem, with an explicit bound for the Wasserstein distance.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司