亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider realizable contextual bandits with general function approximation, investigating how small reward variance can lead to better-than-minimax regret bounds. Unlike in minimax bounds, we show that the eluder dimension $d_\text{elu}$$-$a complexity measure of the function class$-$plays a crucial role in variance-dependent bounds. We consider two types of adversary: (1) Weak adversary: The adversary sets the reward variance before observing the learner's action. In this setting, we prove that a regret of $\Omega(\sqrt{\min\{A,d_\text{elu}\}\Lambda}+d_\text{elu})$ is unavoidable when $d_{\text{elu}}\leq\sqrt{AT}$, where $A$ is the number of actions, $T$ is the total number of rounds, and $\Lambda$ is the total variance over $T$ rounds. For the $A\leq d_\text{elu}$ regime, we derive a nearly matching upper bound $\tilde{O}(\sqrt{A\Lambda}+d_\text{elu})$ for the special case where the variance is revealed at the beginning of each round. (2) Strong adversary: The adversary sets the reward variance after observing the learner's action. We show that a regret of $\Omega(\sqrt{d_\text{elu}\Lambda}+d_\text{elu})$ is unavoidable when $\sqrt{d_\text{elu}\Lambda}+d_\text{elu}\leq\sqrt{AT}$. In this setting, we provide an upper bound of order $\tilde{O}(d_\text{elu}\sqrt{\Lambda}+d_\text{elu})$. Furthermore, we examine the setting where the function class additionally provides distributional information of the reward, as studied by Wang et al. (2024). We demonstrate that the regret bound $\tilde{O}(\sqrt{d_\text{elu}\Lambda}+d_\text{elu})$ established in their work is unimprovable when $\sqrt{d_{\text{elu}}\Lambda}+d_\text{elu}\leq\sqrt{AT}$. However, with a slightly different definition of the total variance and with the assumption that the reward follows a Gaussian distribution, one can achieve a regret of $\tilde{O}(\sqrt{A\Lambda}+d_\text{elu})$.

相關內容

We take the classic facility location problem and consider a variation, in which each agent's individual cost function is equal to their distance from the facility multiplied by a scaling factor which is determined by the facility placement. In addition to the general class of continuous scaling functions, we also provide results for piecewise linear scaling functions which can effectively approximate or model the scaling of many real world scenarios. We focus on the objectives of total and maximum cost, describing the computation of the optimal solution. We then move to the approximate mechanism design setting, observing that the agents' preferences may no longer be single-peaked. Consequently, we characterize the conditions on scaling functions which ensure that agents have single-peaked preferences. Under these conditions, we find a characterization of continuous, strategyproof, and anonymous mechanisms, and compute the total and maximum cost approximation ratios achievable by these mechanisms.

Learning problems in which multiple conflicting objectives must be considered simultaneously often arise in various fields, including engineering, drug design, and environmental management. Traditional methods for dealing with multiple black-box objective functions, such as scalarization and identification of the Pareto set under the componentwise order, have limitations in incorporating objective preferences and exploring the solution space accordingly. While vector optimization offers improved flexibility and adaptability via specifying partial orders based on ordering cones, current techniques designed for sequential experiments either suffer from high sample complexity or lack theoretical guarantees. To address these issues, we propose Vector Optimization with Gaussian Process (VOGP), a probably approximately correct adaptive elimination algorithm that performs black-box vector optimization using Gaussian process bandits. VOGP allows users to convey objective preferences through ordering cones while performing efficient sampling by exploiting the smoothness of the objective function, resulting in a more effective optimization process that requires fewer evaluations. We establish theoretical guarantees for VOGP and derive information gain-based and kernel-specific sample complexity bounds. We also conduct experiments on both real-world and synthetic datasets to compare VOGP with the state-of-the-art methods.

Code summarization facilitates program comprehension and software maintenance by converting code snippets into natural-language descriptions. Over the years, numerous methods have been developed for this task, but a key challenge remains: effectively evaluating the quality of generated summaries. While human evaluation is effective for assessing code summary quality, it is labor-intensive and difficult to scale. Commonly used automatic metrics, such as BLEU, ROUGE-L, METEOR, and BERTScore, often fail to align closely with human judgments. In this paper, we explore the potential of Large Language Models (LLMs) for evaluating code summarization. We propose CODERPE (Role-Player for Code Summarization Evaluation), a novel method that leverages role-player prompting to assess the quality of generated summaries. Specifically, we prompt an LLM agent to play diverse roles, such as code reviewer, code author, code editor, and system analyst. Each role evaluates the quality of code summaries across key dimensions, including coherence, consistency, fluency, and relevance. We further explore the robustness of LLMs as evaluators by employing various prompting strategies, including chain-of-thought reasoning, in-context learning, and tailored rating form designs. The results demonstrate that LLMs serve as effective evaluators for code summarization methods. Notably, our LLM-based evaluator, CODERPE , achieves an 81.59% Spearman correlation with human evaluations, outperforming the existing BERTScore metric by 17.27%.

The predominant success of diffusion models in generative modeling has spurred significant interest in understanding their theoretical foundations. In this work, we propose a feature learning framework aimed at analyzing and comparing the training dynamics of diffusion models with those of traditional classification models. Our theoretical analysis demonstrates that, under identical settings, diffusion models, due to the denoising objective, are encouraged to learn more balanced and comprehensive representations of the data. In contrast, neural networks with a similar architecture trained for classification tend to prioritize learning specific patterns in the data, often focusing on easy-to-learn components. To support these theoretical insights, we conduct several experiments on both synthetic and real-world datasets, which empirically validate our findings and highlight the distinct feature learning dynamics in diffusion models compared to classification.

Qualitative Spatial Reasoning is a well explored area of Knowledge Representation and Reasoning and has multiple applications ranging from Geographical Information Systems to Robotics and Computer Vision. Recently, many claims have been made for the reasoning capabilities of Large Language Models (LLMs). Here, we investigate the extent to which a set of representative LLMs can perform classical qualitative spatial reasoning tasks on the mereotopological Region Connection Calculus, RCC-8. We conduct three pairs of experiments (reconstruction of composition tables, alignment to human composition preferences, conceptual neighbourhood reconstruction) using state-of-the-art LLMs; in each pair one experiment uses eponymous relations and one, anonymous relations (to test the extent to which the LLM relies on knowledge about the relation names obtained during training). All instances are repeated 30 times to measure the stochasticity of the LLMs.

This article aims to demonstrate how the approach to computing is being disrupted by deep learning (artificial neural networks), not only in terms of techniques but also in our interactions with machines. It also addresses the philosophical tradition of hermeneutics (Don Ihde, Wilhelm Dilthey) to highlight a parallel with this movement and to demystify the idea of human-like AI.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司