亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Floating point algorithms are studied for computational problems arising in Density Functional Theory (DFT), a powerful technique to determine the electronic structure of solids, e.g., metals, oxides, or semiconductors. Specifically, we seek algorithms with provable properties for the density matrix and the corresponding electron density in atomic systems described by the Kohn-Sham equations expressed in a localized basis set. The underlying problem is a Hermitian generalized eigenvalue problem of the form $HC=SCE$, where $H$ is Hermitian and $S$ is Hermitian positive-definite (HPD). Different methods are developed and combined to solve this problem. We first describe a Hermitian pseudospectral shattering method in finite precision, and use it to obtain a new gap-independent floating point algorithm to compute all eigenvalues of a Hermitian matrix within an additive error $\delta$ in $O(T_{MM}(n)\log^2(\tfrac{n}{\delta}))$. Here $T_{MM}(n) = O(n^{\omega+\eta})$, for any $\eta>0$, and $\omega\leq 2.371552$ is the matrix multiplication exponent.To the best of our knowledge, this is the first algorithm to achieve nearly $O(n^\omega)$ bit complexity for all Hermitian eigenvalues. As by-products, we also demonstrate additive error approximations for all singular values of rectangular matrices, and, for full-rank matrices, relative error approximations for all eigenvalues, all singular values, the spectral norm, and the condition number. We finally provide a novel analysis of a logarithmically-stable Cholesky factorization algorithm, and show that it can be used to accurately transform the HPD generalized eigenproblem to a Hermitian eigenproblem in $O(T_{MM}(n))$. All these tools are combined to obtain the first provably accurate floating point algorithms with nearly $O(T_{MM}(n))$ bit complexity for the density matrix and the electron density of atomic systems.

相關內容

The goal of Causal Discovery is to find automated search methods for learning causal structures from observational data. In some cases all variables of the interested causal mechanism are measured, and the task is to predict the effects one measured variable has on another. In contrast, sometimes the variables of primary interest are not directly observable but instead inferred from their manifestations in the data. These are referred to as latent variables. One commonly known example is the psychological construct of intelligence, which cannot directly measured so researchers try to assess through various indicators such as IQ tests. In this case, casual discovery algorithms can uncover underlying patterns and structures to reveal the causal connections between the latent variables and between the latent and observed variables. This thesis focuses on two questions in causal discovery: providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, (ii) can be applied to non-Gaussian families of distributions, and (iii) under the assumption that the modified version of Strong Faithfulness holds, can be used to show the uniform consistency of a modified causal discovery algorithm; relaxing the sufficiency assumption to learn causal structures with latent variables. Given the importance of inferring cause-and-effect relationships for understanding and forecasting complex systems, the work in this thesis of relaxing various simplification assumptions is expected to extend the causal discovery method to be applicable in a wider range with diversified causal mechanism and statistical phenomena.

Both space and ground communications have been proven effective solutions under different perspectives in Internet of Things (IoT) networks. This paper investigates multiple-access scenarios, where plenty of IoT users are cooperatively served by a satellite in space and access points (APs) on the ground. Available users in each coherence interval are split into scheduled and unscheduled subsets to optimize limited radio resources. We compute the uplink ergodic throughput of each scheduled user under imperfect channel state information (CSI) and non-orthogonal pilot signals. As maximum-radio combining is deployed locally at the ground gateway and the APs, the uplink ergodic throughput is obtained in a closed-form expression. The analytical results explicitly unveil the effects of channel conditions and pilot contamination on each scheduled user. By maximizing the sum throughput, the system can simultaneously determine scheduled users and perform power allocation based on either a model-based approach with alternating optimization or a learning-based approach with the graph neural network. Numerical results manifest that integrated satellite-terrestrial cell-free massive multiple-input multiple-output systems can significantly improve the sum ergodic throughput over coherence intervals. The integrated systems can schedule the vast majority of users; some might be out of service due to the limited power budget.

Recently, there has been a growing interest in learning and explaining causal effects within Neural Network (NN) models. By virtue of NN architectures, previous approaches consider only direct and total causal effects assuming independence among input variables. We view an NN as a structural causal model (SCM) and extend our focus to include indirect causal effects by introducing feedforward connections among input neurons. We propose an ante-hoc method that captures and maintains direct, indirect, and total causal effects during NN model training. We also propose an algorithm for quantifying learned causal effects in an NN model and efficient approximation strategies for quantifying causal effects in high-dimensional data. Extensive experiments conducted on synthetic and real-world datasets demonstrate that the causal effects learned by our ante-hoc method better approximate the ground truth effects compared to existing methods.

We propose a novel set of Poisson Cluster Process (PCP) models to detect Ultra-Diffuse Galaxies (UDGs), a class of extremely faint, enigmatic galaxies of substantial interest in modern astrophysics. We model the unobserved UDG locations as parent points in a PCP, and infer their positions based on the observed spatial point patterns of their old star cluster systems. Many UDGs have somewhere from a few to hundreds of these old star clusters, which we treat as offspring points in our models. We also present a new framework to construct a marked PCP model using the marks of star clusters. The marked PCP model may enhance the detection of UDGs and offers broad applicability to problems in other disciplines. To assess the overall model performance, we design an innovative assessment tool for spatial prediction problems where only point-referenced ground truth is available, overcoming the limitation of standard ROC analyses where spatial Boolean reference maps are required. We construct a bespoke blocked Gibbs adaptive spatial birth-death-move MCMC algorithm to infer the locations of UDGs using real data from a \textit{Hubble Space Telescope} imaging survey. Based on our performance assessment tool, our novel models significantly outperform existing approaches using the Log-Gaussian Cox Process. We also obtained preliminary evidence that the marked PCP model improves UDG detection performance compared to the model without marks. Furthermore, we find evidence of a potential new ``dark galaxy'' that was not detected by previous methods.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Graph Neural Networks (GNNs) have gained momentum in graph representation learning and boosted the state of the art in a variety of areas, such as data mining (\emph{e.g.,} social network analysis and recommender systems), computer vision (\emph{e.g.,} object detection and point cloud learning), and natural language processing (\emph{e.g.,} relation extraction and sequence learning), to name a few. With the emergence of Transformers in natural language processing and computer vision, graph Transformers embed a graph structure into the Transformer architecture to overcome the limitations of local neighborhood aggregation while avoiding strict structural inductive biases. In this paper, we present a comprehensive review of GNNs and graph Transformers in computer vision from a task-oriented perspective. Specifically, we divide their applications in computer vision into five categories according to the modality of input data, \emph{i.e.,} 2D natural images, videos, 3D data, vision + language, and medical images. In each category, we further divide the applications according to a set of vision tasks. Such a task-oriented taxonomy allows us to examine how each task is tackled by different GNN-based approaches and how well these approaches perform. Based on the necessary preliminaries, we provide the definitions and challenges of the tasks, in-depth coverage of the representative approaches, as well as discussions regarding insights, limitations, and future directions.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.

How can we estimate the importance of nodes in a knowledge graph (KG)? A KG is a multi-relational graph that has proven valuable for many tasks including question answering and semantic search. In this paper, we present GENI, a method for tackling the problem of estimating node importance in KGs, which enables several downstream applications such as item recommendation and resource allocation. While a number of approaches have been developed to address this problem for general graphs, they do not fully utilize information available in KGs, or lack flexibility needed to model complex relationship between entities and their importance. To address these limitations, we explore supervised machine learning algorithms. In particular, building upon recent advancement of graph neural networks (GNNs), we develop GENI, a GNN-based method designed to deal with distinctive challenges involved with predicting node importance in KGs. Our method performs an aggregation of importance scores instead of aggregating node embeddings via predicate-aware attention mechanism and flexible centrality adjustment. In our evaluation of GENI and existing methods on predicting node importance in real-world KGs with different characteristics, GENI achieves 5-17% higher NDCG@100 than the state of the art.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司