亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Factor importance measures the impact of each feature on output prediction accuracy. Many existing works focus on the model-based importance, but an important feature in one learning algorithm may hold little significance in another model. Hence, a factor importance measure ought to characterize the feature's predictive potential without relying on a specific prediction algorithm. Such algorithm-agnostic importance is termed as intrinsic importance in Williamson et al. (2023), but their estimator again requires model fitting. To bypass the modeling step, we present the equivalence between predictiveness potential and total Sobol' indices from global sensitivity analysis, and introduce a novel consistent estimator that can be directly estimated from noisy data. Integrating with forward selection and backward elimination gives rise to FIRST, Factor Importance Ranking and Selection using Total (Sobol') indices. Extensive simulations are provided to demonstrate the effectiveness of FIRST on regression and binary classification problems, and a clear advantage over the state-of-the-art methods.

相關內容

The ability of the foundation models heavily relies on large-scale, diverse, and high-quality pretraining data. In order to improve data quality, researchers and practitioners often have to manually curate datasets from difference sources and develop dedicated data cleansing pipeline for each data repository. Lacking a unified data processing framework, this process is repetitive and cumbersome. To mitigate this issue, we propose a data processing framework that integrates a Processing Module which consists of a series of operators at different granularity levels, and an Analyzing Module which supports probing and evaluation of the refined data. The proposed framework is easy to use and highly flexible. In this demo paper, we first introduce how to use this framework with some example use cases and then demonstrate its effectiveness in improving the data quality with an automated evaluation with ChatGPT and an end-to-end evaluation in pretraining the GPT-2 model. The code and demonstration videos are accessible on GitHub.

The increasing use of complex and opaque black box models requires the adoption of interpretable measures, one such option is extractive rationalizing models, which serve as a more interpretable alternative. These models, also known as Explain-Then-Predict models, employ an explainer model to extract rationales and subsequently condition the predictor with the extracted information. Their primary objective is to provide precise and faithful explanations, represented by the extracted rationales. In this paper, we take a semi-supervised approach to optimize for the plausibility of extracted rationales. We adopt a pre-trained natural language inference (NLI) model and further fine-tune it on a small set of supervised rationales ($10\%$). The NLI predictor is leveraged as a source of supervisory signals to the explainer via entailment alignment. We show that, by enforcing the alignment agreement between the explanation and answer in a question-answering task, the performance can be improved without access to ground truth labels. We evaluate our approach on the ERASER dataset and show that our approach achieves comparable results with supervised extractive models and outperforms unsupervised approaches by $> 100\%$.

Editing signals using large pre-trained models, in a zero-shot manner, has recently seen rapid advancements in the image domain. However, this wave has yet to reach the audio domain. In this paper, we explore two zero-shot editing techniques for audio signals, which use DDPM inversion on pre-trained diffusion models. The first, adopted from the image domain, allows text-based editing. The second, is a novel approach for discovering semantically meaningful editing directions without supervision. When applied to music signals, this method exposes a range of musically interesting modifications, from controlling the participation of specific instruments to improvisations on the melody. Samples and code can be found on our examples page in //hilamanor.github.io/AudioEditing/ .

As a special infinite-order vector autoregressive (VAR) model, the vector autoregressive moving average (VARMA) model can capture much richer temporal patterns than the widely used finite-order VAR model. However, its practicality has long been hindered by its non-identifiability, computational intractability, and difficulty of interpretation, especially for high-dimensional time series. This paper proposes a novel sparse infinite-order VAR model for high-dimensional time series, which avoids all above drawbacks while inheriting essential temporal patterns of the VARMA model. As another attractive feature, the temporal and cross-sectional structures of the VARMA-type dynamics captured by this model can be interpreted separately, since they are characterized by different sets of parameters. This separation naturally motivates the sparsity assumption on the parameters determining the cross-sectional dependence. As a result, greater statistical efficiency and interpretability can be achieved with little loss of temporal information. We introduce two $\ell_1$-regularized estimation methods for the proposed model, which can be efficiently implemented via block coordinate descent algorithms, and derive the corresponding nonasymptotic error bounds. A consistent model order selection method based on the Bayesian information criteria is also developed. The merit of the proposed approach is supported by simulation studies and a real-world macroeconomic data analysis.

Punctuation restoration plays an essential role in the post-processing procedure of automatic speech recognition, but model efficiency is a key requirement for this task. To that end, we present EfficientPunct, an ensemble method with a multimodal time-delay neural network that outperforms the current best model by 1.0 F1 points, using less than a tenth of its inference network parameters. We streamline a speech recognizer to efficiently output hidden layer acoustic embeddings for punctuation restoration, as well as BERT to extract meaningful text embeddings. By using forced alignment and temporal convolutions, we eliminate the need for attention-based fusion, greatly increasing computational efficiency and raising performance. EfficientPunct sets a new state of the art with an ensemble that weights BERT's purely language-based predictions slightly more than the multimodal network's predictions. Our code is available at //github.com/lxy-peter/EfficientPunct.

Although the computing power of mobile devices is increasing, machine learning models are also growing in size. This trend creates problems for mobile devices due to limitations like their memory capacity and battery life. While many services, like ChatGPT and Midjourney, run all the inferences in the cloud, we believe a flexible and fine-grained task distribution is more desirable. In this work, we consider model segmentation as a solution to improving the user experience, dividing the computation between mobile devices and the cloud in a way that offloads the compute-heavy portion of the model while minimizing the data transfer required. We show that the division not only reduces the wait time for users but can also be fine-tuned to optimize the workloads of the cloud. To achieve that, we design a scheduler that collects information about network quality, client device capability, and job requirements, making decisions to achieve consistent performance across a range of devices while reducing the work the cloud needs to perform.

Recent studies show that vision models pre-trained in generic visual learning tasks with large-scale data can provide useful feature representations for a wide range of visual perception problems. However, few attempts have been made to exploit pre-trained foundation models in visual place recognition (VPR). Due to the inherent difference in training objectives and data between the tasks of model pre-training and VPR, how to bridge the gap and fully unleash the capability of pre-trained models for VPR is still a key issue to address. To this end, we propose a novel method to realize seamless adaptation of pre-trained models for VPR. Specifically, to obtain both global and local features that focus on salient landmarks for discriminating places, we design a hybrid adaptation method to achieve both global and local adaptation efficiently, in which only lightweight adapters are tuned without adjusting the pre-trained model. Besides, to guide effective adaptation, we propose a mutual nearest neighbor local feature loss, which ensures proper dense local features are produced for local matching and avoids time-consuming spatial verification in re-ranking. Experimental results show that our method outperforms the state-of-the-art methods with less training data and training time, and uses about only 3% retrieval runtime of the two-stage VPR methods with RANSAC-based spatial verification. It ranks 1st on the MSLS challenge leaderboard (at the time of submission). The code is released at //github.com/Lu-Feng/SelaVPR.

Recent diffusion-based generative models show promise in their ability to generate text images, but limitations in specifying the styles of the generated texts render them insufficient in the realm of typographic design. This paper proposes a typographic text generation system to add and modify text on typographic designs while specifying font styles, colors, and text effects. The proposed system is a novel combination of two off-the-shelf methods for diffusion models, ControlNet and Blended Latent Diffusion. The former functions to generate text images under the guidance of edge conditions specifying stroke contours. The latter blends latent noise in Latent Diffusion Models (LDM) to add typographic text naturally onto an existing background. We first show that given appropriate text edges, ControlNet can generate texts in specified fonts while incorporating effects described by prompts. We further introduce text edge manipulation as an intuitive and customizable way to produce texts with complex effects such as ``shadows'' and ``reflections''. Finally, with the proposed system, we successfully add and modify texts on a predefined background while preserving its overall coherence.

Existing knowledge graph (KG) embedding models have primarily focused on static KGs. However, real-world KGs do not remain static, but rather evolve and grow in tandem with the development of KG applications. Consequently, new facts and previously unseen entities and relations continually emerge, necessitating an embedding model that can quickly learn and transfer new knowledge through growth. Motivated by this, we delve into an expanding field of KG embedding in this paper, i.e., lifelong KG embedding. We consider knowledge transfer and retention of the learning on growing snapshots of a KG without having to learn embeddings from scratch. The proposed model includes a masked KG autoencoder for embedding learning and update, with an embedding transfer strategy to inject the learned knowledge into the new entity and relation embeddings, and an embedding regularization method to avoid catastrophic forgetting. To investigate the impacts of different aspects of KG growth, we construct four datasets to evaluate the performance of lifelong KG embedding. Experimental results show that the proposed model outperforms the state-of-the-art inductive and lifelong embedding baselines.

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become increasingly unwieldy, missing, or private. This paper suggests several techniques for dealing with visual representation learning in such a future. Code is released on our project page: //ali-design.github.io/GenRep/

北京阿比特科技有限公司