In this paper, we present a practical solution to implement privacy-preserving CNN training based on mere Homomorphic Encryption (HE) technique. To our best knowledge, this is the first attempt successfully to crack this nut and no work ever before has achieved this goal. Several techniques combine to accomplish the task:: (1) with transfer learning, privacy-preserving CNN training can be reduced to homomorphic neural network training, or even multiclass logistic regression (MLR) training; (2) via a faster gradient variant called $\texttt{Quadratic Gradient}$, an enhanced gradient method for MLR with a state-of-the-art performance in convergence speed is applied in this work to achieve high performance; (3) we employ the thought of transformation in mathematics to transform approximating Softmax function in the encryption domain to the approximation of the Sigmoid function. A new type of loss function termed $\texttt{Squared Likelihood Error}$ has been developed alongside to align with this change.; and (4) we use a simple but flexible matrix-encoding method named $\texttt{Volley Revolver}$ to manage the data flow in the ciphertexts, which is the key factor to complete the whole homomorphic CNN training. The complete, runnable C++ code to implement our work can be found at: \href{//github.com/petitioner/HE.CNNtraining}{$\texttt{//github.com/petitioner/HE.CNNtraining}$}. We select $\texttt{REGNET\_X\_400MF}$ as our pre-trained model for transfer learning. We use the first 128 MNIST training images as training data and the whole MNIST testing dataset as the testing data. The client only needs to upload 6 ciphertexts to the cloud and it takes $\sim 21$ mins to perform 2 iterations on a cloud with 64 vCPUs, resulting in a precision of $21.49\%$.
Fault diagnosis is essential in industrial processes for monitoring the conditions of important machines. With the ever-increasing complexity of working conditions and demand for safety during production and operation, different diagnosis methods are required, and more importantly, an integrated fault diagnosis system that can cope with multiple tasks is highly desired. However, the diagnosis subtasks are often studied separately, and the currently available methods still need improvement for such a generalized system. To address this issue, we propose the Generalized Out-of-distribution Fault Diagnosis (GOOFD) framework to integrate diagnosis subtasks, such as fault detection, fault classification, and novel fault diagnosis. Additionally, a unified fault diagnosis method based on internal contrastive learning is put forward to underpin the proposed generalized framework. The method extracts features utilizing the internal contrastive learning technique and then recognizes the outliers based on the Mahalanobis distance. Experiments are conducted on a simulated benchmark dataset as well as two practical process datasets to evaluate the proposed framework. As demonstrated in the experiments, the proposed method achieves better performance compared with several existing techniques and thus verifies the effectiveness of the proposed framework.
Eigenspace estimation is fundamental in machine learning and statistics, which has found applications in PCA, dimension reduction, and clustering, among others. The modern machine learning community usually assumes that data come from and belong to different organizations. The low communication power and the possible privacy breaches of data make the computation of eigenspace challenging. To address these challenges, we propose a class of algorithms called \textsf{FedPower} within the federated learning (FL) framework. \textsf{FedPower} leverages the well-known power method by alternating multiple local power iterations and a global aggregation step, thus improving communication efficiency. In the aggregation, we propose to weight each local eigenvector matrix with {\it Orthogonal Procrustes Transformation} (OPT) for better alignment. To ensure strong privacy protection, we add Gaussian noise in each iteration by adopting the notion of \emph{differential privacy} (DP). We provide convergence bounds for \textsf{FedPower} that are composed of different interpretable terms corresponding to the effects of Gaussian noise, parallelization, and random sampling of local machines. Additionally, we conduct experiments to demonstrate the effectiveness of our proposed algorithms.
Theoretical studies on transfer learning or domain adaptation have so far focused on situations with a known hypothesis class or model; however in practice, some amount of model selection is usually involved, often appearing under the umbrella term of hyperparameter-tuning: for example, one may think of the problem of tuning for the right neural network architecture towards a target task, while leveraging data from a related source task. Now, in addition to the usual tradeoffs on approximation vs estimation errors involved in model selection, this problem brings in a new complexity term, namely, the transfer distance between source and target distributions, which is known to vary with the choice of hypothesis class. We present a first study of this problem, focusing on classification; in particular, the analysis reveals some remarkable phenomena: adaptive rates, i.e., those achievable with no distributional information, can be arbitrarily slower than oracle rates, i.e., when given knowledge on distances.
The federated learning (FL) technique was developed to mitigate data privacy issues in the traditional machine learning paradigm. While FL ensures that a user's data always remain with the user, the gradients are shared with the centralized server to build the global model. This results in privacy leakage, where the server can infer private information from the shared gradients. To mitigate this flaw, the next-generation FL architectures proposed encryption and anonymization techniques to protect the model updates from the server. However, this approach creates other challenges, such as malicious users sharing false gradients. Since the gradients are encrypted, the server is unable to identify rogue users. To mitigate both attacks, this paper proposes a novel FL algorithm based on a fully homomorphic encryption (FHE) scheme. We develop a distributed multi-key additive homomorphic encryption scheme that supports model aggregation in FL. We also develop a novel aggregation scheme within the encrypted domain, utilizing users' non-poisoning rates, to effectively address data poisoning attacks while ensuring privacy is preserved by the proposed encryption scheme. Rigorous security, privacy, convergence, and experimental analyses have been provided to show that FheFL is novel, secure, and private, and achieves comparable accuracy at reasonable computational cost.
Gaussian process regression (GPR) is a non-parametric model that has been used in many real-world applications that involve sensitive personal data (e.g., healthcare, finance, etc.) from multiple data owners. To fully and securely exploit the value of different data sources, this paper proposes a privacy-preserving GPR method based on secret sharing (SS), a secure multi-party computation (SMPC) technique. In contrast to existing studies that protect the data privacy of GPR via homomorphic encryption, differential privacy, or federated learning, our proposed method is more practical and can be used to preserve the data privacy of both the model inputs and outputs for various data-sharing scenarios (e.g., horizontally/vertically-partitioned data). However, it is non-trivial to directly apply SS on the conventional GPR algorithm, as it includes some operations whose accuracy and/or efficiency have not been well-enhanced in the current SMPC protocol. To address this issue, we derive a new SS-based exponentiation operation through the idea of 'confusion-correction' and construct an SS-based matrix inversion algorithm based on Cholesky decomposition. More importantly, we theoretically analyze the communication cost and the security of the proposed SS-based operations. Empirical results show that our proposed method can achieve reasonable accuracy and efficiency under the premise of preserving data privacy.
Distributed online learning is gaining increased traction due to its unique ability to process large-scale datasets and streaming data. To address the growing public awareness and concern on privacy protection, plenty of private distributed online learning algorithms have been proposed, mostly based on differential privacy which has emerged as the ``gold standard" for privacy protection. However, these algorithms often face the dilemma of trading learning accuracy for privacy. By exploiting the unique characteristics of online learning, this paper proposes an approach that tackles the dilemma and ensures both differential privacy and learning accuracy in distributed online learning. More specifically, while ensuring a diminishing expected instantaneous regret, the approach can simultaneously ensure a finite cumulative privacy budget, even on the infinite time horizon. To cater for the fully distributed setting, we adopt the local differential-privacy framework which avoids the reliance on a trusted data curator, and hence, provides stronger protection than the classic ``centralized" (global) differential privacy. To the best of our knowledge, this is the first algorithm that successfully ensures both rigorous local differential privacy and learning accuracy. The effectiveness of the proposed algorithm is evaluated using machine learning tasks, including logistic regression on the ``Mushrooms" and ``Covtype" datasets and CNN based image classification on the ``MNIST" and ``CIFAR-10" datasets.
Quantizing the activation, weight, and gradient to 4-bit is promising to accelerate neural network training. However, existing 4-bit training methods require custom numerical formats which are not supported by contemporary hardware. In this work, we propose a training method for transformers with all matrix multiplications implemented with the INT4 arithmetic. Training with an ultra-low INT4 precision is challenging. To achieve this, we carefully analyze the specific structures of activation and gradients in transformers to propose dedicated quantizers for them. For forward propagation, we identify the challenge of outliers and propose a Hadamard quantizer to suppress the outliers. For backpropagation, we leverage the structural sparsity of gradients by proposing bit splitting and leverage score sampling techniques to quantize gradients accurately. Our algorithm achieves competitive accuracy on a wide range of tasks including natural language understanding, machine translation, and image classification. Unlike previous 4-bit training methods, our algorithm can be implemented on the current generation of GPUs. Our prototypical linear operator implementation is up to 2.2 times faster than the FP16 counterparts and speeds up the training by up to 35.1%.
In the last decade, many deep learning models have been well trained and made a great success in various fields of machine intelligence, especially for computer vision and natural language processing. To better leverage the potential of these well-trained models in intra-domain or cross-domain transfer learning situations, knowledge distillation (KD) and domain adaptation (DA) are proposed and become research highlights. They both aim to transfer useful information from a well-trained model with original training data. However, the original data is not always available in many cases due to privacy, copyright or confidentiality. Recently, the data-free knowledge transfer paradigm has attracted appealing attention as it deals with distilling valuable knowledge from well-trained models without requiring to access to the training data. In particular, it mainly consists of the data-free knowledge distillation (DFKD) and source data-free domain adaptation (SFDA). On the one hand, DFKD aims to transfer the intra-domain knowledge of original data from a cumbersome teacher network to a compact student network for model compression and efficient inference. On the other hand, the goal of SFDA is to reuse the cross-domain knowledge stored in a well-trained source model and adapt it to a target domain. In this paper, we provide a comprehensive survey on data-free knowledge transfer from the perspectives of knowledge distillation and unsupervised domain adaptation, to help readers have a better understanding of the current research status and ideas. Applications and challenges of the two areas are briefly reviewed, respectively. Furthermore, we provide some insights to the subject of future research.
Self-supervised learning has been widely used to obtain transferrable representations from unlabeled images. Especially, recent contrastive learning methods have shown impressive performances on downstream image classification tasks. While these contrastive methods mainly focus on generating invariant global representations at the image-level under semantic-preserving transformations, they are prone to overlook spatial consistency of local representations and therefore have a limitation in pretraining for localization tasks such as object detection and instance segmentation. Moreover, aggressively cropped views used in existing contrastive methods can minimize representation distances between the semantically different regions of a single image. In this paper, we propose a spatially consistent representation learning algorithm (SCRL) for multi-object and location-specific tasks. In particular, we devise a novel self-supervised objective that tries to produce coherent spatial representations of a randomly cropped local region according to geometric translations and zooming operations. On various downstream localization tasks with benchmark datasets, the proposed SCRL shows significant performance improvements over the image-level supervised pretraining as well as the state-of-the-art self-supervised learning methods.
There is a recent large and growing interest in generative adversarial networks (GANs), which offer powerful features for generative modeling, density estimation, and energy function learning. GANs are difficult to train and evaluate but are capable of creating amazingly realistic, though synthetic, image data. Ideas stemming from GANs such as adversarial losses are creating research opportunities for other challenges such as domain adaptation. In this paper, we look at the field of GANs with emphasis on these areas of emerging research. To provide background for adversarial techniques, we survey the field of GANs, looking at the original formulation, training variants, evaluation methods, and extensions. Then we survey recent work on transfer learning, focusing on comparing different adversarial domain adaptation methods. Finally, we take a look forward to identify open research directions for GANs and domain adaptation, including some promising applications such as sensor-based human behavior modeling.