亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a novel approach for solving linear numeric planning problems, called Symbolic Pattern Planning. Given a planning problem $\Pi$, a bound $n$ and a pattern -- defined as an arbitrary sequence of actions -- we encode the problem of finding a plan for $\Pi$ with bound $n$ as a formula with fewer variables and/or clauses than the state-of-the-art rolled-up and relaxed-relaxed-$\exists$ encodings. More importantly, we prove that for any given bound, it is never the case that the latter two encodings allow finding a valid plan while ours does not. On the experimental side, we consider 6 other planning systems -- including the ones which participated in this year's International Planning Competition (IPC) -- and we show that our planner Patty has remarkably good comparative performances on this year's IPC problems.

相關內容

In this paper, we propose Image Downscaling Assessment by Rate-Distortion (IDA-RD), a novel measure to quantitatively evaluate image downscaling algorithms. In contrast to image-based methods that measure the quality of downscaled images, ours is process-based that draws ideas from rate-distortion theory to measure the distortion incurred during downscaling. Our main idea is that downscaling and super-resolution (SR) can be viewed as the encoding and decoding processes in the rate-distortion model, respectively, and that a downscaling algorithm that preserves more details in the resulting low-resolution (LR) images should lead to less distorted high-resolution (HR) images in SR. In other words, the distortion should increase as the downscaling algorithm deteriorates. However, it is non-trivial to measure this distortion as it requires the SR algorithm to be blind and stochastic. Our key insight is that such requirements can be met by recent SR algorithms based on deep generative models that can find all matching HR images for a given LR image on their learned image manifolds. Extensive experimental results show the effectiveness of our IDA-RD measure.

In this paper, we study the problem of global reward maximization with only partial distributed feedback. This problem is motivated by several real-world applications (e.g., cellular network configuration, dynamic pricing, and policy selection) where an action taken by a central entity influences a large population that contributes to the global reward. However, collecting such reward feedback from the entire population not only incurs a prohibitively high cost but often leads to privacy concerns. To tackle this problem, we consider differentially private distributed linear bandits, where only a subset of users from the population are selected (called clients) to participate in the learning process and the central server learns the global model from such partial feedback by iteratively aggregating these clients' local feedback in a differentially private fashion. We then propose a unified algorithmic learning framework, called differentially private distributed phased elimination (DP-DPE), which can be naturally integrated with popular differential privacy (DP) models (including central DP, local DP, and shuffle DP). Furthermore, we prove that DP-DPE achieves both sublinear regret and sublinear communication cost. Interestingly, DP-DPE also achieves privacy protection ``for free'' in the sense that the additional cost due to privacy guarantees is a lower-order additive term. In addition, as a by-product of our techniques, the same results of ``free" privacy can also be achieved for the standard differentially private linear bandits. Finally, we conduct simulations to corroborate our theoretical results and demonstrate the effectiveness of DP-DPE.

In this paper we investigate formal verification problems for Neural Network computations. Of central importance will be various robustness and minimization problems such as: Given symbolic specifications of allowed inputs and outputs in form of Linear Programming instances, one question is whether there do exist valid inputs such that the network computes a valid output? And does this property hold for all valid inputs? Do two given networks compute the same function? Is there a smaller network computing the same function? The complexity of these questions have been investigated recently from a practical point of view and approximated by heuristic algorithms. We complement these achievements by giving a theoretical framework that enables us to interchange security and efficiency questions in neural networks and analyze their computational complexities. We show that the problems are conquerable in a semi-linear setting, meaning that for piecewise linear activation functions and when the sum- or maximum metric is used, most of them are in P or in NP at most.

The paper proposes a novel problem in multi-class Multiple-Instance Learning (MIL) called Learning from the Majority Label (LML). In LML, the majority class of instances in a bag is assigned as the bag's label. LML aims to classify instances using bag-level majority classes. This problem is valuable in various applications. Existing MIL methods are unsuitable for LML due to aggregating confidences, which may lead to inconsistency between the bag-level label and the label obtained by counting the number of instances for each class. This may lead to incorrect instance-level classification. We propose a counting network trained to produce the bag-level majority labels estimated by counting the number of instances for each class. This led to the consistency of the majority class between the network outputs and one obtained by counting the number of instances. Experimental results show that our counting network outperforms conventional MIL methods on four datasets The code is publicly available at //github.com/Shiku-Kaito/Counting-Network-for-Learning-from-Majority-Label.

In this paper, error estimates of classification Random Forests are quantitatively assessed. Based on the initial theoretical framework built by Bates et al. (2023), the true error rate and expected error rate are theoretically and empirically investigated in the context of a variety of error estimation methods common to Random Forests. We show that in the classification case, Random Forests' estimates of prediction error is closer on average to the true error rate instead of the average prediction error. This is opposite the findings of Bates et al. (2023) which are given for logistic regression. We further show that our result holds across different error estimation strategies such as cross-validation, bagging, and data splitting.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司