In this paper, we propose nonlocal diffusion models with Dirichlet boundary. These nonlocal diffusion models preserve the maximum principle and also have corresponding variational form. With these good properties, we can prove the well-posedness and the vanishing nonlocality convergence. Furthermore, by specifically designed weight function, we can get a nonlocal diffusion model with second order convergence which is optimal for nonlocal diffusion models.
The aim of this article is to present a hybrid finite element/finite difference method which is used for reconstructions of electromagnetic properties within a realistic breast phantom. This is done by studying the mentioned properties' (electric permittivity and conductivity in this case) representing coefficients in a constellation of Maxwell's equations. This information is valuable since these coefficient can reveal types of tissues within the breast, and in applications could be used to detect shapes and locations of tumours. Because of the ill-posed nature of this coefficient inverse problem, we approach it as an optimization problem by introducing the corresponding Tikhonov functional and in turn Lagrangian. These are then minimized by utilizing an interplay between finite element and finite difference methods for solutions of direct and adjoint problems, and thereafter by applying a conjugate gradient method to an adaptively refined mesh.
In this article, we propose and study a stochastic and relaxed preconditioned Douglas--Rachford splitting method to solve saddle-point problems that have separable dual variables. We prove the almost sure convergence of the iteration sequences in Hilbert spaces for a class of convex-concave and nonsmooth saddle-point problems. We also provide the sublinear convergence rate for the ergodic sequence concerning the expectation of the restricted primal-dual gap functions. Numerical experiments show the high efficiency of the proposed stochastic and relaxed preconditioned Douglas--Rachford splitting methods.
In this paper, we apply quasi-Monte Carlo (QMC) methods with an initial preintegration step to estimate cumulative distribution functions and probability density functions in uncertainty quantification (UQ). The distribution and density functions correspond to a quantity of interest involving the solution to an elliptic partial differential equation (PDE) with a lognormally distributed coefficient and a normally distributed source term. There is extensive previous work on using QMC to compute expected values in UQ, which have proven very successful in tackling a range of different PDE problems. However, the use of QMC for density estimation applied to UQ problems will be explored here for the first time. Density estimation presents a more difficult challenge compared to computing the expected value due to discontinuities present in the integral formulations of both the distribution and density. Our strategy is to use preintegration to eliminate the discontinuity by integrating out a carefully selected random parameter, so that QMC can be used to approximate the remaining integral. First, we establish regularity results for the PDE quantity of interest that are required for smoothing by preintegration to be effective. We then show that an $N$-point lattice rule can be constructed for the integrands corresponding to the distribution and density, such that after preintegration the QMC error is of order $\mathcal{O}(N^{-1+\epsilon})$ for arbitrarily small $\epsilon>0$. This is the same rate achieved for computing the expected value of the quantity of interest. Numerical results are presented to reaffirm our theory.
To avoid ineffective collisions between the equilibrium states, the hybrid method with deviational particles (HDP) has been proposed to integrate the Fokker-Planck-Landau system, while leaving a new issue in sampling deviational particles from the high-dimensional source term. In this paper, we present an adaptive sampling (AS) strategy that first adaptively reconstructs a piecewise constant approximation of the source term based on sequential clustering via discrepancy estimation, and then samples deviational particles directly from the resulting adaptive piecewise constant function without rejection. The mixture discrepancy, which can be easily calculated thanks to its explicit analytical expression, is employed as a measure of uniformity instead of the star discrepancy the calculation of which is NP-hard. The resulting method, dubbed the HDP-AS method, runs approximately ten times faster than the HDP method while keeping the same accuracy in the Landau damping, two stream instability, bump on tail and Rosenbluth's test problem.
In this paper we consider two different views of the model checking problems for the Linear Temporal Logic (LTL). On the one hand, we consider the universal model checking problem for LTL, where one asks that for a given system and a given formula all the runs of the system satisfy the formula. On the other hand, the fair model checking problem for LTL asks that for a given system and a given formula almost all the runs of the system satisfy the formula. It was shown that these two problems have the same theoretical complexity i.e. PSPACE-complete. The question arises whether one can find a fragment of LTL for which the complexity of these two problems differs. One such fragment was identified in a previous work, namely the Muller fragment. We address a similar comparison for the prompt fragment of LTL (pLTL). pLTL extends LTL with an additional operator, i.e. the prompt-eventually. This operator ensures the existence of a bound such that liveness properties are satisfied within this bound. We show that the corresponding Muller fragment for pLTL does not enjoy the same algorithmic properties with respect to the comparison considered. We also identify a new expressive fragment for which the fair model checking is faster than the universal one.
In this paper, we introduce and analyze a numerical scheme for solving the Cauchy-Dirichlet problem associated with fractional nonlinear diffusion equations. These equations generalize the porous medium equation and the fast diffusion equation by incorporating a fractional diffusion term. We provide a rigorous analysis showing that the discretization preserves main properties of the continuous equations, including algebraic decay in the fractional porous medium case and the extinction phenomenon in the fractional fast diffusion case. The study is supported by extensive numerical simulations. In addition, we propose a novel method for accurately computing the extinction time for the fractional fast diffusion equation and illustrate numerically the convergence of rescaled solutions towards asymptotic profiles near the extinction time.
The main purpose of this paper is to design a local discontinuous Galerkin (LDG) method for the Benjamin-Ono equation. We analyze the stability and error estimates for the semi-discrete LDG scheme. We prove that the scheme is $L^2$-stable and it converges at a rate $\mathcal{O}(h^{k+1/2})$ for general nonlinear flux. Furthermore, we develop a fully discrete LDG scheme using the four-stage fourth order Runge-Kutta method and ensure the devised scheme is strongly stable in case of linear flux using two-step and three-step stability approach under an appropriate time step constraint. Numerical examples are provided to validate the efficiency and accuracy of the method.
We present a fully discrete Crank-Nicolson Fourier-spectral-Galerkin (FSG) scheme for approximating solutions of the fractional Korteweg-de Vries (KdV) equation, which involves a fractional Laplacian with exponent $\alpha \in [1,2]$ and a small dispersion coefficient of order $\varepsilon^2$. The solution in the limit as $\varepsilon \to 0$ is known as the zero dispersion limit. We demonstrate that the semi-discrete FSG scheme conserves the first three integral invariants, thereby structure preserving, and that the fully discrete FSG scheme is $L^2$-conservative, ensuring stability. Using a compactness argument, we constructively prove the convergence of the approximate solution to the unique solution of the fractional KdV equation in $C([0,T]; H_p^{1+\alpha}(\mathbb{R}))$ for the periodic initial data in $H_p^{1+\alpha}(\mathbb{R})$. The devised scheme achieves spectral accuracy for the initial data in $H_p^r,$ $r \geq 1+\alpha$ and exponential accuracy for the analytic initial data. Additionally, we establish that the approximation of the zero dispersion limit obtained from the fully discrete FSG scheme converges to the solution of the Hopf equation in $L^2$ as $\varepsilon \to 0$, up to the gradient catastrophe time $t_c$. Beyond $t_c$, numerical investigations reveal that the approximation converges to the asymptotic solution, which is weakly described by the Whitham's averaged equation within the oscillatory zone for $\alpha = 2$. Numerical results are provided to demonstrate the convergence of the scheme and to validate the theoretical findings.
Given a finite set of matrices with integer entries, the matrix mortality problem asks if there exists a product of these matrices equal to the zero matrix. We consider a special case of this problem where all entries of the matrices are nonnegative. This case is equivalent to the NFA mortality problem, which, given an NFA, asks for a word $w$ such that the image of every state under $w$ is the empty set. The size of the alphabet of the NFA is then equal to the number of matrices in the set. We study the length of shortest such words depending on the size of the alphabet. We show that for an NFA with $n$ states this length can be at least $2^n - 1$ for an alphabet of size $n$, $2^{(n - 4)/2}$ for an alphabet of size $3$ and $2^{(n - 2)/3}$ for an alphabet of size $2$. We also discuss further open problems related to mortality of NFAs and DFAs.
This paper deals with nonlinear mechanics of an elevator brake system subjected to uncertainties. A deterministic model that relates the braking force with uncertain parameters is deduced from mechanical equilibrium conditions. In order to take into account parameters variabilities, a parametric probabilistic approach is employed. In this stochastic formalism, the uncertain parameters are modeled as random variables, with distributions specified by the maximum entropy principle. The uncertainties are propagated by the Monte Carlo method, which provides a detailed statistical characterization of the response. This work still considers the optimum design of the brake system, formulating and solving nonlinear optimization problems, with and without the uncertainties effects.