In this thesis, we investigate the problem of efficient data detection in large MIMO and high order MU-MIMO systems. First, near-optimal low-complexity detection algorithms are proposed for regular MIMO systems. Then, a family of low-complexity hard-output and soft-output detection schemes based on channel matrix puncturing targeted for large MIMO systems is proposed. The performance of these schemes is characterized and analyzed mathematically, and bounds on capacity, diversity gain, and probability of bit error are derived. After that, efficient high order MU-MIMO detectors are proposed, based on joint modulation classification and subspace detection, where the modulation type of the interferer is estimated, while multiple decoupled streams are individually detected. Hardware architectures are designed for the proposed algorithms, and the promised gains are verified via simulations. Finally, we map the studied search-based detection schemes to low-resolution precoding at the transmitter side in massive MIMO and report the performance-complexity tradeoffs.
Humans are able to learn to recognize new objects even from a few examples. In contrast, training deep-learning-based object detectors requires huge amounts of annotated data. To avoid the need to acquire and annotate these huge amounts of data, few-shot object detection aims to learn from few object instances of new categories in the target domain. In this survey, we provide an overview of the state of the art in few-shot object detection. We categorize approaches according to their training scheme and architectural layout. For each type of approaches, we describe the general realization as well as concepts to improve the performance on novel categories. Whenever appropriate, we give short takeaways regarding these concepts in order to highlight the best ideas. Eventually, we introduce commonly used datasets and their evaluation protocols and analyze reported benchmark results. As a result, we emphasize common challenges in evaluation and identify the most promising current trends in this emerging field of few-shot object detection.
Neural Architecture Search (NAS) was first proposed to achieve state-of-the-art performance through the discovery of new architecture patterns, without human intervention. An over-reliance on expert knowledge in the search space design has however led to increased performance (local optima) without significant architectural breakthroughs, thus preventing truly novel solutions from being reached. In this work we 1) are the first to investigate casting NAS as a problem of finding the optimal network generator and 2) we propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types, yet only requiring few continuous hyper-parameters. This greatly reduces the dimensionality of the problem, enabling the effective use of Bayesian Optimisation as a search strategy. At the same time, we expand the range of valid architectures, motivating a multi-objective learning approach. We demonstrate the effectiveness of this strategy on six benchmark datasets and show that our search space generates extremely lightweight yet highly competitive models.
To improve the search efficiency for Neural Architecture Search (NAS), One-shot NAS proposes to train a single super-net to approximate the performance of proposal architectures during search via weight-sharing. While this greatly reduces the computation cost, due to approximation error, the performance prediction by a single super-net is less accurate than training each proposal architecture from scratch, leading to search inefficiency. In this work, we propose few-shot NAS that explores the choice of using multiple super-nets: each super-net is pre-trained to be in charge of a sub-region of the search space. This reduces the prediction error of each super-net. Moreover, training these super-nets can be done jointly via sequential fine-tuning. A natural choice of sub-region is to follow the splitting of search space in NAS. We empirically evaluate our approach on three different tasks in NAS-Bench-201. Extensive results have demonstrated that few-shot NAS, using only 5 super-nets, significantly improves performance of many search methods with slight increase of search time. The architectures found by DARTs and ENAS with few-shot models achieved 88.53% and 86.50% test accuracy on CIFAR-10 in NAS-Bench-201, significantly outperformed their one-shot counterparts (with 54.30% and 54.30% test accuracy). Moreover, on AUTOGAN and DARTS, few-shot NAS also outperforms previously state-of-the-art models.
In this paper, we present a comprehensive review of the imbalance problems in object detection. To analyze the problems in a systematic manner, we introduce a problem-based taxonomy. Following this taxonomy, we discuss each problem in depth and present a unifying yet critical perspective on the solutions in the literature. In addition, we identify major open issues regarding the existing imbalance problems as well as imbalance problems that have not been discussed before. Moreover, in order to keep our review up to date, we provide an accompanying webpage which catalogs papers addressing imbalance problems, according to our problem-based taxonomy. Researchers can track newer studies on this webpage available at: //github.com/kemaloksuz/ObjectDetectionImbalance .
Outlier detection is an important topic in machine learning and has been used in a wide range of applications. In this paper, we approach outlier detection as a binary-classification issue by sampling potential outliers from a uniform reference distribution. However, due to the sparsity of data in high-dimensional space, a limited number of potential outliers may fail to provide sufficient information to assist the classifier in describing a boundary that can separate outliers from normal data effectively. To address this, we propose a novel Single-Objective Generative Adversarial Active Learning (SO-GAAL) method for outlier detection, which can directly generate informative potential outliers based on the mini-max game between a generator and a discriminator. Moreover, to prevent the generator from falling into the mode collapsing problem, the stop node of training should be determined when SO-GAAL is able to provide sufficient information. But without any prior information, it is extremely difficult for SO-GAAL. Therefore, we expand the network structure of SO-GAAL from a single generator to multiple generators with different objectives (MO-GAAL), which can generate a reasonable reference distribution for the whole dataset. We empirically compare the proposed approach with several state-of-the-art outlier detection methods on both synthetic and real-world datasets. The results show that MO-GAAL outperforms its competitors in the majority of cases, especially for datasets with various cluster types or high irrelevant variable ratio.
Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space. (2) A predictor takes the continuous representation of a network as input and predicts its accuracy. (3) A decoder maps a continuous representation of a network back to its architecture. The performance predictor and the encoder enable us to perform gradient based optimization in the continuous space to find the embedding of a new architecture with potentially better accuracy. Such a better embedding is then decoded to a network by the decoder. Experiments show that the architecture discovered by our method is very competitive for image classification task on CIFAR-10 and language modeling task on PTB, outperforming or on par with the best results of previous architecture search methods with a significantly reduction of computational resources. Specifically we obtain $2.07\%$ test set error rate for CIFAR-10 image classification task and $55.9$ test set perplexity of PTB language modeling task. The best discovered architectures on both tasks are successfully transferred to other tasks such as CIFAR-100 and WikiText-2.
We propose accelerated randomized coordinate descent algorithms for stochastic optimization and online learning. Our algorithms have significantly less per-iteration complexity than the known accelerated gradient algorithms. The proposed algorithms for online learning have better regret performance than the known randomized online coordinate descent algorithms. Furthermore, the proposed algorithms for stochastic optimization exhibit as good convergence rates as the best known randomized coordinate descent algorithms. We also show simulation results to demonstrate performance of the proposed algorithms.
Although Faster R-CNN and its variants have shown promising performance in object detection, they only exploit simple first-order representation of object proposals for final classification and regression. Recent classification methods demonstrate that the integration of high-order statistics into deep convolutional neural networks can achieve impressive improvement, but their goal is to model whole images by discarding location information so that they cannot be directly adopted to object detection. In this paper, we make an attempt to exploit high-order statistics in object detection, aiming at generating more discriminative representations for proposals to enhance the performance of detectors. To this end, we propose a novel Multi-scale Location-aware Kernel Representation (MLKP) to capture high-order statistics of deep features in proposals. Our MLKP can be efficiently computed on a modified multi-scale feature map using a low-dimensional polynomial kernel approximation.Moreover, different from existing orderless global representations based on high-order statistics, our proposed MLKP is location retentive and sensitive so that it can be flexibly adopted to object detection. Through integrating into Faster R-CNN schema, the proposed MLKP achieves very competitive performance with state-of-the-art methods, and improves Faster R-CNN by 4.9% (mAP), 4.7% (mAP) and 5.0% (AP at IOU=[0.5:0.05:0.95]) on PASCAL VOC 2007, VOC 2012 and MS COCO benchmarks, respectively. Code is available at: //github.com/Hwang64/MLKP.
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios.
Image forensics aims to detect the manipulation of digital images. Currently, splicing detection, copy-move detection and image retouching detection are drawing much attentions from researchers. However, image editing techniques develop with time goes by. One emerging image editing technique is colorization, which can colorize grayscale images with realistic colors. Unfortunately, this technique may also be intentionally applied to certain images to confound object recognition algorithms. To the best of our knowledge, no forensic technique has yet been invented to identify whether an image is colorized. We observed that, compared to natural images, colorized images, which are generated by three state-of-the-art methods, possess statistical differences for the hue and saturation channels. Besides, we also observe statistical inconsistencies in the dark and bright channels, because the colorization process will inevitably affect the dark and bright channel values. Based on our observations, i.e., potential traces in the hue, saturation, dark and bright channels, we propose two simple yet effective detection methods for fake colorized images: Histogram based Fake Colorized Image Detection (FCID-HIST) and Feature Encoding based Fake Colorized Image Detection (FCID-FE). Experimental results demonstrate that both proposed methods exhibit a decent performance against multiple state-of-the-art colorization approaches.