In this paper, we tackle the significant challenge of temporal knowledge reasoning in Large Language Models (LLMs), an area where such models frequently encounter difficulties. These difficulties often result in the generation of misleading or incorrect information, primarily due to their limited capacity to process evolving factual knowledge and complex temporal logic. In response, we propose a novel, constructivism-based approach that advocates for a paradigm shift in LLM learning towards an active, ongoing process of knowledge synthesis and customization. At the heart of our proposal is the Abstract Reasoning Induction ARI framework, which divides temporal reasoning into two distinct phases: Knowledge-agnostic and Knowledge-based. This division aims to reduce instances of hallucinations and improve LLMs' capacity for integrating abstract methodologies derived from historical data. Our approach achieves remarkable improvements, with relative gains of 29.7\% and 9.27\% on two temporal QA datasets, underscoring its efficacy in advancing temporal reasoning in LLMs. The code will be released at //github.com/czy1999/ARI.
In this paper, we study the technical problem of developing conversational agents that can quickly adapt to unseen tasks, learn task-specific communication tactics, and help listeners finish complex, temporally extended tasks. We find that the uncertainty of language learning can be decomposed to an entropy term and a mutual information term, corresponding to the structural and functional aspect of language, respectively. Combined with reinforcement learning, our method automatically requests human samples for training when adapting to new tasks and learns communication protocols that are succinct and helpful for task completion. Human and simulation test results on a referential game and a 3D navigation game prove the effectiveness of the proposed method.
In this paper, we provide the first convergence guarantee for the factorization approach. Specifically, to avoid the scaling ambiguity and to facilitate theoretical analysis, we optimize over the so-called left-orthogonal TT format which enforces orthonormality among most of the factors. To ensure the orthonormal structure, we utilize the Riemannian gradient descent (RGD) for optimizing those factors over the Stiefel manifold. We first delve into the TT factorization problem and establish the local linear convergence of RGD. Notably, the rate of convergence only experiences a linear decline as the tensor order increases. We then study the sensing problem that aims to recover a TT format tensor from linear measurements. Assuming the sensing operator satisfies the restricted isometry property (RIP), we show that with a proper initialization, which could be obtained through spectral initialization, RGD also converges to the ground-truth tensor at a linear rate. Furthermore, we expand our analysis to encompass scenarios involving Gaussian noise in the measurements. We prove that RGD can reliably recover the ground truth at a linear rate, with the recovery error exhibiting only polynomial growth in relation to the tensor order. We conduct various experiments to validate our theoretical findings.
In this paper, we study Discretized Neural Networks (DNNs) composed of low-precision weights and activations, which suffer from either infinite or zero gradients due to the non-differentiable discrete function during training. Most training-based DNNs in such scenarios employ the standard Straight-Through Estimator (STE) to approximate the gradient w.r.t. discrete values. However, the use of STE introduces the problem of gradient mismatch, arising from perturbations in the approximated gradient. To address this problem, this paper reveals that this mismatch can be interpreted as a metric perturbation in a Riemannian manifold, viewed through the lens of duality theory. Building on information geometry, we construct the Linearly Nearly Euclidean (LNE) manifold for DNNs, providing a background for addressing perturbations. By introducing a partial differential equation on metrics, i.e., the Ricci flow, we establish the dynamical stability and convergence of the LNE metric with the $L^2$-norm perturbation. In contrast to previous perturbation theories with convergence rates in fractional powers, the metric perturbation under the Ricci flow exhibits exponential decay in the LNE manifold. Experimental results across various datasets demonstrate that our method achieves superior and more stable performance for DNNs compared to other representative training-based methods.
In this paper, the paraconsistent propositional logic LG is presented, along with its semantic characterization. It is shown that LG's set of theorems corresponds to the set of valid existential graphs, GET, which turns out to be an extension of Peirce's Gamma system, without becoming Zeman's gamma-4 system. All evidence is presented in a complete, rigorous, and detailed manner. This result is generalized by constructing the paraconsistent system of existential graphs GET4, and its semantic-deductive characterization. Finally, Zeman's Gamma-4, Gamma-4.2, and Gamma-5 existential graph systems are proven to be paraconsistent.
Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
Inferring missing links in knowledge graphs (KG) has attracted a lot of attention from the research community. In this paper, we tackle a practical query answering task involving predicting the relation of a given entity pair. We frame this prediction problem as an inference problem in a probabilistic graphical model and aim at resolving it from a variational inference perspective. In order to model the relation between the query entity pair, we assume that there exists an underlying latent variable (paths connecting two nodes) in the KG, which carries the equivalent semantics of their relations. However, due to the intractability of connections in large KGs, we propose to use variation inference to maximize the evidence lower bound. More specifically, our framework (\textsc{Diva}) is composed of three modules, i.e. a posterior approximator, a prior (path finder), and a likelihood (path reasoner). By using variational inference, we are able to incorporate them closely into a unified architecture and jointly optimize them to perform KG reasoning. With active interactions among these sub-modules, \textsc{Diva} is better at handling noise and coping with more complex reasoning scenarios. In order to evaluate our method, we conduct the experiment of the link prediction task on multiple datasets and achieve state-of-the-art performances on both datasets.
This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.