亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a new framework for learning a rule ensemble model that is both accurate and interpretable. A rule ensemble is an interpretable model based on the linear combination of weighted rules. In practice, we often face the trade-off between the accuracy and interpretability of rule ensembles. That is, a rule ensemble needs to include a sufficiently large number of weighted rules to maintain its accuracy, which harms its interpretability for human users. To avoid this trade-off and learn an interpretable rule ensemble without degrading accuracy, we introduce a new concept of interpretability, named local interpretability, which is evaluated by the total number of rules necessary to express individual predictions made by the model, rather than to express the model itself. Then, we propose a regularizer that promotes local interpretability and develop an efficient algorithm for learning a rule ensemble with the proposed regularizer by coordinate descent with local search. Experimental results demonstrated that our method learns rule ensembles that can explain individual predictions with fewer rules than the existing methods, including RuleFit, while maintaining comparable accuracy.

相關內容

The performance of graph representation learning is affected by the quality of graph input. While existing research usually pursues a globally smoothed graph embedding, we believe the rarely observed anomalies are as well harmful to an accurate prediction. This work establishes a graph learning scheme that automatically detects (locally) corrupted feature attributes and recovers robust embedding for prediction tasks. The detection operation leverages a graph autoencoder, which does not make any assumptions about the distribution of the local corruptions. It pinpoints the positions of the anomalous node attributes in an unbiased mask matrix, where robust estimations are recovered with sparsity promoting regularizer. The optimizer approaches a new embedding that is sparse in the framelet domain and conditionally close to input observations. Extensive experiments are provided to validate our proposed model can recover a robust graph representation from black-box poisoning and achieve excellent performance.

Most NeRF-based models are designed for learning the entire scene, and complex scenes can lead to longer learning times and poorer rendering effects. This paper utilizes scene semantic priors to make improvements in fast training, allowing the network to focus on the specific targets and not be affected by complex backgrounds. The training speed can be increased by 7.78 times with better rendering effect, and small to medium sized targets can be rendered faster. In addition, this improvement applies to all NeRF-based models. Considering the inherent multi-view consistency and smoothness of NeRF, this paper also studies weak supervision by sparsely sampling negative ray samples. With this method, training can be further accelerated and rendering quality can be maintained. Finally, this paper extends pixel semantic and color rendering formulas and proposes a new scene editing technique that can achieve unique displays of the specific semantic targets or masking them in rendering. To address the problem of unsupervised regions incorrect inferences in the scene, we also designed a self-supervised loop that combines morphological operations and clustering.

Rare event simulation and rare event probability estimation are important tasks within the analysis of systems subject to uncertainty and randomness. Simultaneously, accurately estimating rare event probabilities is an inherently difficult task that calls for dedicated tools and methods. One way to improve estimation efficiency on difficult rare event estimation problems is to leverage gradients of the computational model representing the system in consideration, e.g., to explore the rare event faster and more reliably. We present a novel approach for estimating rare event probabilities using such model gradients by drawing on a technique to generate samples from non-normalized posterior distributions in Bayesian inference - the Stein variational gradient descent. We propagate samples generated from a tractable input distribution towards a near-optimal rare event importance sampling distribution by exploiting a similarity of the latter with Bayesian posterior distributions. Sample propagation takes the shape of passing samples through a sequence of invertible transforms such that their densities can be tracked and used to construct an unbiased importance sampling estimate of the rare event probability - the Stein variational rare event estimator. We discuss settings and parametric choices of the algorithm and suggest a method for balancing convergence speed with stability by choosing the step width or base learning rate adaptively. We analyze the method's performance on several analytical test functions and two engineering examples in low to high stochastic dimensions ($d = 2 - 869$) and find that it consistently outperforms other state-of-the-art gradient-based rare event simulation methods.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder for shape generation, aimed at improving the visual quality of the generated shapes. An implicit field assigns a value to each point in 3D space, so that a shape can be extracted as an iso-surface. Our implicit field decoder is trained to perform this assignment by means of a binary classifier. Specifically, it takes a point coordinate, along with a feature vector encoding a shape, and outputs a value which indicates whether the point is outside the shape or not. By replacing conventional decoders by our decoder for representation learning and generative modeling of shapes, we demonstrate superior results for tasks such as shape autoencoding, generation, interpolation, and single-view 3D reconstruction, particularly in terms of visual quality.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

This paper proposes a method to modify traditional convolutional neural networks (CNNs) into interpretable CNNs, in order to clarify knowledge representations in high conv-layers of CNNs. In an interpretable CNN, each filter in a high conv-layer represents a certain object part. We do not need any annotations of object parts or textures to supervise the learning process. Instead, the interpretable CNN automatically assigns each filter in a high conv-layer with an object part during the learning process. Our method can be applied to different types of CNNs with different structures. The clear knowledge representation in an interpretable CNN can help people understand the logics inside a CNN, i.e., based on which patterns the CNN makes the decision. Experiments showed that filters in an interpretable CNN were more semantically meaningful than those in traditional CNNs.

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.

北京阿比特科技有限公司