Breached data refers to the unauthorized access, theft, or exposure of confidential or sensitive information. Breaches typically occur when malicious actors or unauthorized users breach secure systems or networks, resulting in compromised personally identifiable information (PII), protected or personal health information (PHI), payment card industry (PCI) information, or other sensitive data. Data breaches are often the result of malicious activities such as hacking, phishing, insider threats, malware, or physical theft. The misuse of breached data can lead to identity theft, fraud, spamming, or blackmailing. Organizations that experience data breaches may face legal and financial consequences, reputational damage, and harm to their customers or users. Breached records are commonly sold on the dark web or made available on various public forums. To counteract these malicious activities, it is possible to collect breached databases and mitigate potential harm. These databases can be quite large, reaching sizes of up to 150 GB or more. Typically, breached data is stored in the CSV (Comma Separated Value) format due to its simplicity and lightweight nature, which reduces storage requirements. Analyzing and traversing large breached databases necessitates substantial computational power. However, this research explores techniques to optimize database traversal speed without the need to rent expensive cloud machines or virtual private servers (VPS). This optimization will enable individual security researchers to analyze and process large databases on their personal computer systems while significantly reducing costs.
Convex relaxations are a key component of training and certifying provably safe neural networks. However, despite substantial progress, a wide and poorly understood accuracy gap to standard networks remains, raising the question of whether this is due to fundamental limitations of convex relaxations. Initial work investigating this question focused on the simple and widely used IBP relaxation. It revealed that some univariate, convex, continuous piecewise linear (CPWL) functions cannot be encoded by any ReLU network such that its IBP-analysis is precise. To explore whether this limitation is shared by more advanced convex relaxations, we conduct the first in-depth study on the expressive power of ReLU networks across all commonly used convex relaxations. We show that: (i) more advanced relaxations allow a larger class of univariate functions to be expressed as precisely analyzable ReLU networks, (ii) more precise relaxations can allow exponentially larger solution spaces of ReLU networks encoding the same functions, and (iii) even using the most precise single-neuron relaxations, it is impossible to construct precisely analyzable ReLU networks that express multivariate, convex, monotone CPWL functions.
Graph research, the systematic study of interconnected data points represented as graphs, plays a vital role in capturing intricate relationships within networked systems. However, in the real world, as graphs scale up, concerns about data security among different data-owning agencies arise, hindering information sharing and, ultimately, the utilization of graph data. Therefore, establishing a mutual trust mechanism among graph agencies is crucial for unlocking the full potential of graphs. Here, we introduce a Cooperative Network Learning (CNL) framework to ensure secure graph computing for various graph tasks. Essentially, this CNL framework unifies the local and global perspectives of GNN computing with distributed data for an agency by virtually connecting all participating agencies as a global graph without a fixed central coordinator. Inter-agency computing is protected by various technologies inherent in our framework, including homomorphic encryption and secure transmission. Moreover, each agency has a fair right to design or employ various graph learning models from its local or global perspective. Thus, CNL can collaboratively train GNN models based on decentralized graphs inferred from local and global graphs. Experiments on contagion dynamics prediction and traditional graph tasks (i.e., node classification and link prediction) demonstrate that our CNL architecture outperforms state-of-the-art GNNs developed at individual sites, revealing that CNL can provide a reliable, fair, secure, privacy-preserving, and global perspective to build effective and personalized models for network applications. We hope this framework will address privacy concerns in graph-related research and integrate decentralized graph data structures to benefit the network research community in cooperation and innovation.
Fish tracking is a key technology for obtaining movement trajectories and identifying abnormal behavior. However, it faces considerable challenges, including occlusion, multi-scale tracking, and fish deformation. Notably, extant reviews have focused more on behavioral analysis rather than providing a comprehensive overview of computer vision-based fish tracking approaches. This paper presents a comprehensive review of the advancements of fish tracking technologies over the past seven years (2017-2023). It explores diverse fish tracking techniques with an emphasis on fundamental localization and tracking methods. Auxiliary plugins commonly integrated into fish tracking systems, such as underwater image enhancement and re-identification, are also examined. Additionally, this paper summarizes open-source datasets, evaluation metrics, challenges, and applications in fish tracking research. Finally, a comprehensive discussion offers insights and future directions for vision-based fish tracking techniques. We hope that our work could provide a partial reference in the development of fish tracking algorithms.
Artificial intelligence operations (AIOps) play a pivotal role in identifying, mitigating, and analyzing anomalous system behaviors and alerts. However, the research landscape in this field remains limited, leaving significant gaps unexplored. This study introduces a novel hybrid framework through an innovative algorithm that incorporates an unsupervised strategy. This strategy integrates Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs) and uses a custom loss function to substantially enhance the effectiveness of log anomaly detection. The proposed approach encompasses the utilization of both simulated and real-world datasets, including logs from SockShop and Hadoop Distributed File System (HDFS). The experimental results are highly promising, demonstrating significant reductions in pseudo-positives. Moreover, this strategy offers notable advantages, such as the ability to process logs in their raw, unprocessed form, and the potential for further enhancements. The successful implementation of this approach showcases a remarkable reduction in anomalous logs, thus unequivocally establishing the efficacy of the proposed methodology. Ultimately, this study makes a substantial contribution to the advancement of log anomaly detection within AIOps platforms, addressing the critical need for effective and efficient log analysis in modern and complex systems.
Weighted projective spaces are natural generalizations of projective spaces with a rich structure. Projective Reed-Muller codes are error-correcting codes that played an important role in reliably transmitting information on digital communication channels. In this case study, we explore the power of commutative and homological algebraic techniques to study weighted projective Reed-Muller (WPRM) codes on weighted projective spaces of the form $\mathbb{P}(1,1,a)$. We compute minimal free resolutions and thereby obtain Hilbert series for the vanishing ideal of the $\mathbb{F}_q$-rational points, and compute main parameters for these codes.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
We describe the new field of mathematical analysis of deep learning. This field emerged around a list of research questions that were not answered within the classical framework of learning theory. These questions concern: the outstanding generalization power of overparametrized neural networks, the role of depth in deep architectures, the apparent absence of the curse of dimensionality, the surprisingly successful optimization performance despite the non-convexity of the problem, understanding what features are learned, why deep architectures perform exceptionally well in physical problems, and which fine aspects of an architecture affect the behavior of a learning task in which way. We present an overview of modern approaches that yield partial answers to these questions. For selected approaches, we describe the main ideas in more detail.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.