High-quality conversational datasets are essential for developing AI models that can communicate with users. One way to foster deeper interactions between a chatbot and its user is through personas, aspects of the user's character that provide insights into their personality, motivations, and behaviors. Training Natural Language Processing (NLP) models on a diverse and comprehensive persona-based dataset can lead to conversational models that create a deeper connection with the user, and maintain their engagement. In this paper, we leverage the power of Large Language Models (LLMs) to create a large, high-quality conversational dataset from a seed dataset. We propose a Generator-Critic architecture framework to expand the initial dataset, while improving the quality of its conversations. The Generator is an LLM prompted to output conversations. The Critic consists of a mixture of expert LLMs that control the quality of the generated conversations. These experts select the best generated conversations, which we then use to improve the Generator. We release Synthetic-Persona-Chat, consisting of 20k conversations seeded from Persona-Chat. We evaluate the quality of Synthetic-Persona-Chat and our generation framework on different dimensions through extensive experiments, and observe that the losing rate of Synthetic-Persona-Chat against Persona-Chat during Turing test decreases from 17.2% to 8.8% over three iterations.
Many current recommender systems mainly focus on the product-to-product recommendations and user-to-product recommendations even during the time of events rather than modeling the typical recommendations for the target event (e.g., festivals, seasonal activities, or social activities) without addressing the multiple aspects of the shopping demands for the target event. Product recommendations for the multiple aspects of the target event are usually generated by human curators who manually identify the aspects and select a list of aspect-related products (i.e., product carousel) for each aspect as recommendations. However, building a recommender system with machine learning is non-trivial due to the lack of both the ground truth of event-related aspects and the aspect-related products. To fill this gap, we define the novel problem as the event-based product carousel recommendations in e-commerce and propose an effective recommender system based on the query-click bipartite graph. We apply the iterative clustering algorithm over the query-click bipartite graph and infer the event-related aspects by the clusters of queries. The aspect-related recommendations are powered by the click-through rate of products regarding each aspect. We show through experiments that this approach effectively mines product carousels for the target event.
Text-to-3D generation has achieved significant success by incorporating powerful 2D diffusion models, but insufficient 3D prior knowledge also leads to the inconsistency of 3D geometry. Recently, since large-scale multi-view datasets have been released, fine-tuning the diffusion model on the multi-view datasets becomes a mainstream to solve the 3D inconsistency problem. However, it has confronted with fundamental difficulties regarding the limited quality and diversity of 3D data, compared with 2D data. To sidestep these trade-offs, we explore a retrieval-augmented approach tailored for score distillation, dubbed RetDream. We postulate that both expressiveness of 2D diffusion models and geometric consistency of 3D assets can be fully leveraged by employing the semantically relevant assets directly within the optimization process. To this end, we introduce novel framework for retrieval-based quality enhancement in text-to-3D generation. We leverage the retrieved asset to incorporate its geometric prior in the variational objective and adapt the diffusion model's 2D prior toward view consistency, achieving drastic improvements in both geometry and fidelity of generated scenes. We conduct extensive experiments to demonstrate that RetDream exhibits superior quality with increased geometric consistency. Project page is available at //ku-cvlab.github.io/RetDream/.
Single-domain generalized object detection aims to enhance a model's generalizability to multiple unseen target domains using only data from a single source domain during training. This is a practical yet challenging task as it requires the model to address domain shift without incorporating target domain data into training. In this paper, we propose a novel phrase grounding-based style transfer (PGST) approach for the task. Specifically, we first define textual prompts to describe potential objects for each unseen target domain. Then, we leverage the grounded language-image pre-training (GLIP) model to learn the style of these target domains and achieve style transfer from the source to the target domain. The style-transferred source visual features are semantically rich and could be close to imaginary counterparts in the target domain. Finally, we employ these style-transferred visual features to fine-tune GLIP. By introducing imaginary counterparts, the detector could be effectively generalized to unseen target domains using only a single source domain for training. Extensive experimental results on five diverse weather driving benchmarks demonstrate our proposed approach achieves state-of-the-art performance, even surpassing some domain adaptive methods that incorporate target domain images into the training process.The source codes and pre-trained models will be made available.
Next location prediction is a discipline that involves predicting a users next location. Its applications include resource allocation, quality of service, energy efficiency, and traffic management. This paper proposes an energy-efficient, small, and low parameter machine learning (ML) architecture for accurate next location prediction, deployable on modest base stations and edge devices. To accomplish this we ran a hundred hyperparameter experiments on the full human mobility patterns of an entire city, to determine an exact ML architecture that reached a plateau of accuracy with the least amount of model parameters. We successfully achieved a reduction in the number of model parameters within published ML architectures from 202 million down to 2 million. This reduced the total size of the model parameters from 791 MB down to 8 MB. Additionally, this decreased the training time by a factor of four, the amount of graphics processing unit (GPU) memory needed for training by a factor of twenty, and the overall accuracy was increased from 80.16% to 82.54%. This improvement allows for modest base stations and edge devices which do not have a large amount of memory or storage, to deploy and utilize the proposed ML architecture for next location prediction.
We develop a family of distributed clustering algorithms that work over networks of users. In the proposed scenario, users contain a local dataset and communicate only with their immediate neighbours, with the aim of finding a clustering of the full, joint data. The proposed family, termed Distributed Gradient Clustering (DGC-$\mathcal{F}_\rho$), is parametrized by $\rho \geq 1$, controling the proximity of users' center estimates, with $\mathcal{F}$ determining the clustering loss. Specialized to popular clustering losses like $K$-means and Huber loss, DGC-$\mathcal{F}_\rho$ gives rise to novel distributed clustering algorithms DGC-KM$_\rho$ and DGC-HL$_\rho$, while a novel clustering loss based on the logistic function leads to DGC-LL$_\rho$. We provide a unified analysis and establish several strong results, under mild assumptions. First, the sequence of centers generated by the methods converges to a well-defined notion of fixed point, under any center initialization and value of $\rho$. Second, as $\rho$ increases, the family of fixed points produced by DGC-$\mathcal{F}_\rho$ converges to a notion of consensus fixed points. We show that consensus fixed points of DGC-$\mathcal{F}_{\rho}$ are equivalent to fixed points of gradient clustering over the full data, guaranteeing a clustering of the full data is produced. For the special case of Bregman losses, we show that our fixed points converge to the set of Lloyd points. Numerical experiments on real data confirm our theoretical findings and demonstrate strong performance of the methods.
Traditional accessibility methods like alternative text and data tables typically underrepresent data visualization's full potential. Keyboard-based chart navigation has emerged as a potential solution, yet efficient data exploration remains challenging. We present VizAbility, a novel system that enriches chart content navigation with conversational interaction, enabling users to use natural language for querying visual data trends. VizAbility adapts to the user's navigation position for improved response accuracy and facilitates verbal command-based chart navigation. Furthermore, it can address queries for contextual information, designed to address the needs of visually impaired users. We designed a large language model (LLM)-based pipeline to address these user queries, leveraging chart data & encoding, user context, and external web knowledge. We conducted both qualitative and quantitative studies to evaluate VizAbility's multimodal approach. We discuss further opportunities based on the results, including enhanced benchmark testing and integration with current visualization tools.
Leveraging datasets available to learn a model with high generalization ability to unseen domains is important for computer vision, especially when the unseen domain's annotated data are unavailable. We study a novel and practical problem of Open Domain Generalization (OpenDG), which learns from different source domains to achieve high performance on an unknown target domain, where the distributions and label sets of each individual source domain and the target domain can be different. The problem can be generally applied to diverse source domains and widely applicable to real-world applications. We propose a Domain-Augmented Meta-Learning framework to learn open-domain generalizable representations. We augment domains on both feature-level by a new Dirichlet mixup and label-level by distilled soft-labeling, which complements each domain with missing classes and other domain knowledge. We conduct meta-learning over domains by designing new meta-learning tasks and losses to preserve domain unique knowledge and generalize knowledge across domains simultaneously. Experiment results on various multi-domain datasets demonstrate that the proposed Domain-Augmented Meta-Learning (DAML) outperforms prior methods for unseen domain recognition.
Social relations are often used to improve recommendation quality when user-item interaction data is sparse in recommender systems. Most existing social recommendation models exploit pairwise relations to mine potential user preferences. However, real-life interactions among users are very complicated and user relations can be high-order. Hypergraph provides a natural way to model complex high-order relations, while its potentials for improving social recommendation are under-explored. In this paper, we fill this gap and propose a multi-channel hypergraph convolutional network to enhance social recommendation by leveraging high-order user relations. Technically, each channel in the network encodes a hypergraph that depicts a common high-order user relation pattern via hypergraph convolution. By aggregating the embeddings learned through multiple channels, we obtain comprehensive user representations to generate recommendation results. However, the aggregation operation might also obscure the inherent characteristics of different types of high-order connectivity information. To compensate for the aggregating loss, we innovatively integrate self-supervised learning into the training of the hypergraph convolutional network to regain the connectivity information with hierarchical mutual information maximization. The experimental results on multiple real-world datasets show that the proposed model outperforms the SOTA methods, and the ablation study verifies the effectiveness of the multi-channel setting and the self-supervised task. The implementation of our model is available via //github.com/Coder-Yu/RecQ.
Conversational recommender systems (CRS) aim to recommend high-quality items to users through interactive conversations. Although several efforts have been made for CRS, two major issues still remain to be solved. First, the conversation data itself lacks of sufficient contextual information for accurately understanding users' preference. Second, there is a semantic gap between natural language expression and item-level user preference. To address these issues, we incorporate both word-oriented and entity-oriented knowledge graphs (KG) to enhance the data representations in CRSs, and adopt Mutual Information Maximization to align the word-level and entity-level semantic spaces. Based on the aligned semantic representations, we further develop a KG-enhanced recommender component for making accurate recommendations, and a KG-enhanced dialog component that can generate informative keywords or entities in the response text. Extensive experiments have demonstrated the effectiveness of our approach in yielding better performance on both recommendation and conversation tasks.
Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.