亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent work modelling 3D open surfaces train deep neural networks to approximate Unsigned Distance Fields (UDFs) and implicitly represent shapes. To convert this representation to an explicit mesh, they either use computationally expensive methods to mesh a dense point cloud sampling of the surface, or distort the surface by inflating it into a Signed Distance Field (SDF). By contrast, we propose to directly mesh deep UDFs as open surfaces with an extension of marching cubes, by locally detecting surface crossings. Our method is order of magnitude faster than meshing a dense point cloud, and more accurate than inflating open surfaces. Moreover, we make our surface extraction differentiable, and show it can help fit sparse supervision signals.

相關內容

Surface 是微軟公司( )旗下(xia)一系列使用(yong) Windows 10(早期為 Windows 8.X)操作系統的電腦產品,目前有 Surface、Surface Pro 和(he) Surface Book 三(san)個系列。 2012 年 6 月 18 日,初代(dai) Surface Pro/RT 由時任微軟 CEO 史蒂夫·鮑爾(er)默發布于在洛杉磯舉行的記者會,2012 年 10 月 26 日上市銷售。 

Diffusion models have recently shown great promise for generative modeling, outperforming GANs on perceptual quality and autoregressive models at density estimation. A remaining downside is their slow sampling time: generating high quality samples takes many hundreds or thousands of model evaluations. Here we make two contributions to help eliminate this downside: First, we present new parameterizations of diffusion models that provide increased stability when using few sampling steps. Second, we present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps. We then keep progressively applying this distillation procedure to our model, halving the number of required sampling steps each time. On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers taking as many as 8192 steps, and are able to distill down to models taking as few as 4 steps without losing much perceptual quality; achieving, for example, a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive distillation procedure does not take more time than it takes to train the original model, thus representing an efficient solution for generative modeling using diffusion at both train and test time.

A key challenge facing deep learning is that neural networks are often not robust to shifts in the underlying data distribution. We study this problem from the perspective of the statistical concept of parameter identification. Generalization bounds from learning theory often assume that the test distribution is close to the training distribution. In contrast, if we can identify the "true" parameters, then the model generalizes to arbitrary distribution shifts. However, neural networks typically have internal symmetries that make parameter identification impossible. We show that we can identify the function represented by a quadratic network even though we cannot identify its parameters; we extend this result to neural networks with ReLU activations. Thus, we can obtain robust generalization bounds for neural networks. We leverage this result to obtain new bounds for contextual bandits and transfer learning with quadratic neural networks. Overall, our results suggest that we can improve robustness of neural networks by designing models that can represent the true data generating process.

We introduce Differentiable Neural Radiosity, a novel method of representing the solution of the differential rendering equation using a neural network. Inspired by neural radiosity techniques, we minimize the norm of the residual of the differential rendering equation to directly optimize our network. The network is capable of outputting continuous, view-independent gradients of the radiance field with respect to scene parameters, taking into account differential global illumination effects while keeping memory and time complexity constant in path length. To solve inverse rendering problems, we use a pre-trained instance of our network that represents the differential radiance field with respect to a limited number of scene parameters. In our experiments, we leverage this to achieve faster and more accurate convergence compared to other techniques such as Automatic Differentiation, Radiative Backpropagation, and Path Replay Backpropagation.

An accurate, physically-based model of soft robots can unlock downstream applications in optimal control. The Finite Element Method (FEM) is an expressive approach for modeling highly deformable structures such as dynamic, elastomeric soft robots. Recently, Projective Dynamics (PD) has been proposed as a fast FEM; however, PD lacks rigorous benchmarking against reality. In this paper, we compare virtual robot models simulated using PD with measurements from their physical counterparts. In particular, we examine several soft structures with different morphologies: a clamped beam under external force, a pneumatically actuated soft robotic arm, and a soft robotic fish tail. We benchmark and analyze different meshing resolutions and elements (tetrahedra and hexahedra), numerical damping, and the differentiability of PD through a differentiable solution (DiffPD). We also advance PD in application to soft robotics by proposing a predictive model for pneumatic soft robot actuation. Through our case-studies, we provide strategies and algorithms for matching real-world physics in simulation, making PD useful for soft robots.

Casting nonlocal problems in variational form and discretizing them with the finite element (FE) method facilitates the use of nonlocal vector calculus to prove well-posedeness, convergence, and stability of such schemes. Employing an FE method also facilitates meshing of complicated domain geometries and coupling with FE methods for local problems. However, nonlocal weak problems involve the computation of a double-integral, which is computationally expensive and presents several challenges. In particular, the inner integral of the variational form associated with the stiffness matrix is defined over the intersections of FE mesh elements with a ball of radius $\delta$, where $\delta$ is the range of nonlocal interaction. Identifying and parameterizing these intersections is a nontrivial computational geometry problem. In this work, we propose a quadrature technique where the inner integration is performed using quadrature points distributed over the full ball, without regard for how it intersects elements, and weights are computed based on the generalized moving least squares method. Thus, as opposed to all previously employed methods, our technique does not require element-by-element integration and fully circumvents the computation of element-ball intersections. This paper considers one- and two-dimensional implementations of piecewise linear continuous FE approximations, focusing on the case where the element size h and the nonlocal radius $\delta$ are proportional, as is typical of practical computations. When boundary conditions are treated carefully and the outer integral of the variational form is computed accurately, the proposed method is asymptotically compatible in the limit of $h \sim \delta \to 0$, featuring at least first-order convergence in L^2 for all dimensions, using both uniform and nonuniform grids.

Contrary to popular belief, Optical Character Recognition (OCR) remains a challenging problem when text occurs in unconstrained environments, like natural scenes, due to geometrical distortions, complex backgrounds, and diverse fonts. In this paper, we present a segmentation-free OCR system that combines deep learning methods, synthetic training data generation, and data augmentation techniques. We render synthetic training data using large text corpora and over 2000 fonts. To simulate text occurring in complex natural scenes, we augment extracted samples with geometric distortions and with a proposed data augmentation technique - alpha-compositing with background textures. Our models employ a convolutional neural network encoder to extract features from text images. Inspired by the recent progress in neural machine translation and language modeling, we examine the capabilities of both recurrent and convolutional neural networks in modeling the interactions between input elements.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.

Partially inspired by successful applications of variational recurrent neural networks, we propose a novel variational recurrent neural machine translation (VRNMT) model in this paper. Different from the variational NMT, VRNMT introduces a series of latent random variables to model the translation procedure of a sentence in a generative way, instead of a single latent variable. Specifically, the latent random variables are included into the hidden states of the NMT decoder with elements from the variational autoencoder. In this way, these variables are recurrently generated, which enables them to further capture strong and complex dependencies among the output translations at different timesteps. In order to deal with the challenges in performing efficient posterior inference and large-scale training during the incorporation of latent variables, we build a neural posterior approximator, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on Chinese-English and English-German translation tasks demonstrate that the proposed model achieves significant improvements over both the conventional and variational NMT models.

北京阿比特科技有限公司