亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an isogeometric method for Kirchhoff-Love shell analysis of shell structures with geometries composed of multiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed isogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of multi-patch surfaces, called analysis-suitable~$G^1$ [1], and on the other hand on the use of the globally $C^1$-smooth isogeometric multi-patch spline space [2]. We use our developed technique within an isogeometric Kirchhoff-Love shell formulation [3] to study linear and non-linear shell problems on multi-patch structures. Thereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex multi-patch structures which cannot be modeled without the use of extraordinary vertices.

相關內容

We consider the linearized elasticity equation, discretized with multi-patch Isogeometric Analysis. A standard discretization error analysis is based on Korn's inequality, which degrades for certain geometries, such as long and thin cantilevers. This phenomenon is known as geometry locking. We observe that high-order methods, like Isogeometric Analysis is beneficial in such a setting. The main focus of this paper is the construction and analysis of a domain decomposition solver, namely an Isogeometric Tearing and Interconnecting (IETI) solver, where we prove that the convergence behavior does not depend on the constant of Korn's inequality for the overall domain, but only on the corresponding constants for the individual patches. Moreover, our analysis is explicit in the choice of the spline degree. Numerical experiments are provided which demonstrates the efficiency of the proposed solver.

We introduce a priori Sobolev-space error estimates for the solution of nonlinear, and possibly parametric, PDEs using Gaussian process and kernel based methods. The primary assumptions are: (1) a continuous embedding of the reproducing kernel Hilbert space of the kernel into a Sobolev space of sufficient regularity; and (2) the stability of the differential operator and the solution map of the PDE between corresponding Sobolev spaces. The proof is articulated around Sobolev norm error estimates for kernel interpolants and relies on the minimizing norm property of the solution. The error estimates demonstrate dimension-benign convergence rates if the solution space of the PDE is smooth enough. We illustrate these points with applications to high-dimensional nonlinear elliptic PDEs and parametric PDEs. Although some recent machine learning methods have been presented as breaking the curse of dimensionality in solving high-dimensional PDEs, our analysis suggests a more nuanced picture: there is a trade-off between the regularity of the solution and the presence of the curse of dimensionality. Therefore, our results are in line with the understanding that the curse is absent when the solution is regular enough.

Let a polytope $P$ be defined by a system $A x \leq b$. We consider the problem of counting the number of integer points inside $P$, assuming that $P$ is $\Delta$-modular, where the polytope $P$ is called $\Delta$-modular if all the rank sub-determinants of $A$ are bounded by $\Delta$ in the absolute value. We present a new FPT-algorithm, parameterized by $\Delta$ and by the maximal number of vertices in $P$, where the maximum is taken by all r.h.s. vectors $b$. We show that our algorithm is more efficient for $\Delta$-modular problems than the approach of A. Barvinok et al. To this end, we do not directly compute the short rational generating function for $P \cap Z^n$, which is commonly used for the considered problem. Instead, we use the dynamic programming principle to compute its particular representation in the form of exponential series that depends on a single variable. We completely do not rely to the Barvinok's unimodular sign decomposition technique. Using our new complexity bound, we consider different special cases that may be of independent interest. For example, we give FPT-algorithms for counting the integer points number in $\Delta$-modular simplices and similar polytopes that have $n + O(1)$ facets. As a special case, for any fixed $m$, we give an FPT-algorithm to count solutions of the unbounded $m$-dimensional $\Delta$-modular subset-sum problem.

Factor analysis provides a canonical framework for imposing lower-dimensional structure such as sparse covariance in high-dimensional data. High-dimensional data on the same set of variables are often collected under different conditions, for instance in reproducing studies across research groups. In such cases, it is natural to seek to learn the shared versus condition-specific structure. Existing hierarchical extensions of factor analysis have been proposed, but face practical issues including identifiability problems. To address these shortcomings, we propose a class of SUbspace Factor Analysis (SUFA) models, which characterize variation across groups at the level of a lower-dimensional subspace. We prove that the proposed class of SUFA models lead to identifiability of the shared versus group-specific components of the covariance, and study their posterior contraction properties. Taking a Bayesian approach, these contributions are developed alongside efficient posterior computation algorithms. Our sampler fully integrates out latent variables, is easily parallelizable and has complexity that does not depend on sample size. We illustrate the methods through application to integration of multiple gene expression datasets relevant to immunology.

Object Storage Systems (OSS) inside a cloud promise scalability, durability, availability, and concurrency. However, open-source OSS does not have a specific approach to letting users and administrators search based on the data, which is contained inside the object storage, without involving the entire cloud infrastructure. Therefore, in this paper, we propose Sherlock, a novel Content-Based Searching (CoBS) architecture to extract additional information from images and documents. Here, we store the additional information in an Elasticsearch-enabled database, which helps us to search for our desired data based on its contents. This approach works in two sequential stages. First, the data will be uploaded to a classifier that will determine the data type and send it to the specific model for the data. Here, the images that are being uploaded are sent to our trained model for object detection, and the documents are sent for keyword extraction. Next, the extracted information is sent to Elasticsearch, which enables searching based on the contents. Because the precision of the models is so fundamental to the search's correctness, we train our models with comprehensive datasets (Microsoft COCO Dataset for multimedia data and SemEval2017 Dataset for document data). Furthermore, we put our designed architecture to the test with a real-world implementation of an open-source OSS called OpenStack Swift. We upload images into the dataset of our implementation in various segments to find out the efficacy of our proposed model in real-life Swift object storage.

Image-based rendering techniques stand at the core of an immersive experience for the user, as they generate novel views given a set of multiple input images. Since they have shown good performance in terms of objective and subjective quality, the research community devotes great effort to their improvement. However, the large volume of data necessary to render at the receiver's side hinders applications in limited bandwidth environments or prevents their employment in real-time applications. We present LeHoPP, a method for input pixel pruning, where we examine the importance of each input pixel concerning the rendered view, and we avoid the use of irrelevant pixels. Even without retraining the image-based rendering network, our approach shows a good trade-off between synthesis quality and pixel rate. When tested in the general neural rendering framework, compared to other pruning baselines, LeHoPP gains between $0.9$ dB and $3.6$ dB on average.

Modern shock-capturing schemes often suffer from numerical shock anomalies if the flow field contains strong shocks, which may limit their further application in hypersonic flow computations. In the current study, we devote our efforts to exploring the primary numerical characteristics and the underlying mechanism of shock instability for second-order finite-volume schemes. To this end, we, for the first time, develop the matrix stability analysis method for the finite-volume MUSCL approach. Such a linearized analysis method allows to investigate the shock instability problem of the finite-volume shock-capturing schemes in a quantitative and efficient manner. Results of the stability analysis demonstrate that the shock stability of second-order scheme is strongly related to the Riemann solver, Mach number, limiter function, numerical shock structure, and computational grid. Unique stability characteristics associated with these factors for second-order methods are revealed quantitatively with the established method. Source location of instability is also clarified by the matrix stability analysis method. Results show that the shock instability originates from the numerical shock structure. Such conclusions pave the way to better understand the shock instability problem and may shed new light on developing more reliable shock-capturing methods for compressible flows with high Mach number.

Recently, graph neural networks (GNNs) have been widely used for document classification. However, most existing methods are based on static word co-occurrence graphs without sentence-level information, which poses three challenges:(1) word ambiguity, (2) word synonymity, and (3) dynamic contextual dependency. To address these challenges, we propose a novel GNN-based sparse structure learning model for inductive document classification. Specifically, a document-level graph is initially generated by a disjoint union of sentence-level word co-occurrence graphs. Our model collects a set of trainable edges connecting disjoint words between sentences and employs structure learning to sparsely select edges with dynamic contextual dependencies. Graphs with sparse structures can jointly exploit local and global contextual information in documents through GNNs. For inductive learning, the refined document graph is further fed into a general readout function for graph-level classification and optimization in an end-to-end manner. Extensive experiments on several real-world datasets demonstrate that the proposed model outperforms most state-of-the-art results, and reveal the necessity to learn sparse structures for each document.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Modern neural network training relies heavily on data augmentation for improved generalization. After the initial success of label-preserving augmentations, there has been a recent surge of interest in label-perturbing approaches, which combine features and labels across training samples to smooth the learned decision surface. In this paper, we propose a new augmentation method that leverages the first and second moments extracted and re-injected by feature normalization. We replace the moments of the learned features of one training image by those of another, and also interpolate the target labels. As our approach is fast, operates entirely in feature space, and mixes different signals than prior methods, one can effectively combine it with existing augmentation methods. We demonstrate its efficacy across benchmark data sets in computer vision, speech, and natural language processing, where it consistently improves the generalization performance of highly competitive baseline networks.

北京阿比特科技有限公司