Quantum Generative Modelling (QGM) relies on preparing quantum states and generating samples from these states as hidden - or known - probability distributions. As distributions from some classes of quantum states (circuits) are inherently hard to sample classically, QGM represents an excellent testbed for quantum supremacy experiments. Furthermore, generative tasks are increasingly relevant for industrial machine learning applications, and thus QGM is a strong candidate for demonstrating a practical quantum advantage. However, this requires that quantum circuits are trained to represent industrially relevant distributions, and the corresponding training stage has an extensive training cost for current quantum hardware in practice. In this work, we propose protocols for classical training of QGMs based on circuits of the specific type that admit an efficient gradient computation, while remaining hard to sample. In particular, we consider Instantaneous Quantum Polynomial (IQP) circuits and their extensions. Showing their classical simulability in terms of the time complexity, sparsity and anti-concentration properties, we develop a classically tractable way of simulating their output probability distributions, allowing classical training to a target probability distribution. The corresponding quantum sampling from IQPs can be performed efficiently, unlike when using classical sampling. We numerically demonstrate the end-to-end training of IQP circuits using probability distributions for up to 30 qubits on a regular desktop computer. When applied to industrially relevant distributions this combination of classical training with quantum sampling represents an avenue for reaching advantage in the NISQ era.
We provide full theoretical guarantees for the convergence behaviour of diffusion-based generative models under the assumption of strongly logconcave data distributions while our approximating class of functions used for score estimation is made of Lipschitz continuous functions. We demonstrate via a motivating example, sampling from a Gaussian distribution with unknown mean, the powerfulness of our approach. In this case, explicit estimates are provided for the associated optimization problem, i.e. score approximation, while these are combined with the corresponding sampling estimates. As a result, we obtain the best known upper bound estimates in terms of key quantities of interest, such as the dimension and rates of convergence, for the Wasserstein-2 distance between the data distribution (Gaussian with unknown mean) and our sampling algorithm. Beyond the motivating example and in order to allow for the use of a diverse range of stochastic optimizers, we present our results using an $L^2$-accurate score estimation assumption, which crucially is formed under an expectation with respect to the stochastic optimizer and our novel auxiliary process that uses only known information. This approach yields the best known convergence rate for our sampling algorithm.
Linear principal component analysis (PCA), nonlinear PCA, and linear independent component analysis (ICA) -- those are three methods with single-layer autoencoder formulations for learning linear transformations from data. Linear PCA learns orthogonal transformations (rotations) that orient axes to maximise variance, but it suffers from a subspace rotational indeterminacy: it fails to find a unique rotation for axes that share the same variance. Both nonlinear PCA and linear ICA reduce the subspace indeterminacy from rotational to permutational by maximising statistical independence under the assumption of unit variance. The main difference between them is that nonlinear PCA only learns rotations while linear ICA learns not just rotations but any linear transformation with unit variance. The relationship between all three can be understood by the singular value decomposition of the linear ICA transformation into a sequence of rotation, scale, rotation. Linear PCA learns the first rotation; nonlinear PCA learns the second. The scale is simply the inverse of the standard deviations. The problem is that, in contrast to linear PCA, conventional nonlinear PCA cannot be used directly on the data to learn the first rotation, the first being special as it reduces dimensionality and orders by variances. In this paper, we have identified the cause, and as a solution we propose $\sigma$-PCA: a unified neural model for linear and nonlinear PCA as single-layer autoencoders. One of its key ingredients: modelling not just the rotation but also the scale -- the variances. This model bridges the disparity between linear and nonlinear PCA. And so, like linear PCA, it can learn a semi-orthogonal transformation that reduces dimensionality and orders by variances, but, unlike linear PCA, it does not suffer from rotational indeterminacy.
The simulation of geological facies in an unobservable volume is essential in various geoscience applications. Given the complexity of the problem, deep generative learning is a promising approach to overcome the limitations of traditional geostatistical simulation models, in particular their lack of physical realism. This research aims to investigate the application of generative adversarial networks and deep variational inference for conditionally simulating meandering channels in underground volumes. In this paper, we review the generative deep learning approaches, in particular the adversarial ones and the stabilization techniques that aim to facilitate their training. The proposed approach is tested on 2D and 3D simulations generated by the stochastic process-based model Flumy. Morphological metrics are utilized to compare our proposed method with earlier iterations of generative adversarial networks. The results indicate that by utilizing recent stabilization techniques, generative adversarial networks can efficiently sample from target data distributions. Moreover, we demonstrate the ability to simulate conditioned simulations through the latent variable model property of the proposed approach.
As a surrogate for computationally intensive meso-scale simulation of woven composites, this article presents Recurrent Neural Network (RNN) models. Leveraging the power of transfer learning, the initialization challenges and sparse data issues inherent in cyclic shear strain loads are addressed in the RNN models. A mean-field model generates a comprehensive data set representing elasto-plastic behavior. In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task. Incorporating sub-scale properties enhances RNN versatility. In order to achieve accurate predictions, the model uses a grid search method to tune network architecture and hyper-parameter configurations. The results of this study demonstrate that transfer learning can be used to effectively adapt the RNN to varying strain conditions, which establishes its potential as a useful tool for modeling path-dependent responses in woven composites.
Robotic capacities in object manipulation are incomparable to those of humans. Besides years of learning, humans rely heavily on the richness of information from physical interaction with the environment. In particular, tactile sensing is crucial in providing such rich feedback. Despite its potential contributions to robotic manipulation, tactile sensing is less exploited; mainly due to the complexity of the time series provided by tactile sensors. In this work, we propose a method for assessing grasp stability using tactile sensing. More specifically, we propose a methodology to extract task-relevant features and design efficient classifiers to detect object slippage with respect to individual fingertips. We compare two classification models: support vector machine and logistic regression. We use highly sensitive Uskin tactile sensors mounted on an Allegro hand to test and validate our method. Our results demonstrate that the proposed method is effective in slippage detection in an online fashion.
We propose Diffusion Model Variational Inference (DMVI), a novel method for automated approximate inference in probabilistic programming languages (PPLs). DMVI utilizes diffusion models as variational approximations to the true posterior distribution by deriving a novel bound to the marginal likelihood objective used in Bayesian modelling. DMVI is easy to implement, allows hassle-free inference in PPLs without the drawbacks of, e.g., variational inference using normalizing flows, and does not make any constraints on the underlying neural network model. We evaluate DMVI on a set of common Bayesian models and show that its posterior inferences are in general more accurate than those of contemporary methods used in PPLs while having a similar computational cost and requiring less manual tuning.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to other robots. In this paper, we propose a method to learn correspondences among two or more robots that may have different morphologies. To be specific, besides robots with similar morphologies with different degrees of freedom, we show that a fixed-based manipulator robot with joint control and a differential drive mobile robot can be addressed within the proposed framework. To set up the correspondence among the robots considered, an initial base task is demonstrated to the robots to achieve the same goal. Then, a common latent representation is learned along with the individual robot policies for achieving the goal. After the initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robots to achieve the same task. We verified our system in a set of experiments where the correspondence between robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.
The Evidential regression network (ENet) estimates a continuous target and its predictive uncertainty without costly Bayesian model averaging. However, it is possible that the target is inaccurately predicted due to the gradient shrinkage problem of the original loss function of the ENet, the negative log marginal likelihood (NLL) loss. In this paper, the objective is to improve the prediction accuracy of the ENet while maintaining its efficient uncertainty estimation by resolving the gradient shrinkage problem. A multi-task learning (MTL) framework, referred to as MT-ENet, is proposed to accomplish this aim. In the MTL, we define the Lipschitz modified mean squared error (MSE) loss function as another loss and add it to the existing NLL loss. The Lipschitz modified MSE loss is designed to mitigate the gradient conflict with the NLL loss by dynamically adjusting its Lipschitz constant. By doing so, the Lipschitz MSE loss does not disturb the uncertainty estimation of the NLL loss. The MT-ENet enhances the predictive accuracy of the ENet without losing uncertainty estimation capability on the synthetic dataset and real-world benchmarks, including drug-target affinity (DTA) regression. Furthermore, the MT-ENet shows remarkable calibration and out-of-distribution detection capability on the DTA benchmarks.
Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.