亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cross-encoders are effective passage and document re-rankers but less efficient than other neural or classic retrieval models. A few previous studies have applied windowed self-attention to make cross-encoders more efficient. However, these studies did not investigate the potential and limits of different attention patterns or window sizes. We close this gap and systematically analyze how token interactions can be reduced without harming the re-ranking effectiveness. Experimenting with asymmetric attention and different window sizes, we find that the query tokens do not need to attend to the passage or document tokens for effective re-ranking and that very small window sizes suffice. In our experiments, even windows of 4 tokens still yield effectiveness on par with previous cross-encoders while reducing the memory requirements to at most 78% / 41% and being 1% / 43% faster at inference time for passages / documents.

相關內容

Recently, the potential of large language models (LLMs) has been widely used in assisting programming. However, current research does not explore the artist potential of LLMs in creative coding within artist and AI collaboration. Our work probes the reflection type of artists in the creation process with such collaboration. We compare two common collaboration approaches: invoking the entire program and multiple subtasks. Our findings exhibit artists' different stimulated reflections in two different methods. Our finding also shows the correlation of reflection type with user performance, user satisfaction, and subjective experience in two collaborations through conducting two methods, including experimental data and qualitative interviews. In this sense, our work reveals the artistic potential of LLM in creative coding. Meanwhile, we provide a critical lens of human-AI collaboration from the artists' perspective and expound design suggestions for future work of AI-assisted creative tasks.

A reasonable confidence interval should have a confidence coefficient no less than the given nominal level and a small expected length to reliably and accurately estimate the parameter of interest, and the bootstrap interval is considered to be an efficient interval estimation technique. In this paper, we offer a first attempt at computing the coverage probability and expected length of a parametric or percentile bootstrap interval by exact probabilistic calculation for any fixed sample size. This method is applied to the basic bootstrap intervals for functions of binomial proportions and a normal mean. None of these intervals, however, are found to have a correct confidence coefficient, which leads to illogical conclusions including that the bootstrap interval is narrower than the z-interval when estimating a normal mean. This raises a general question of how to utilize bootstrap intervals appropriately in practice since the sample size is typically fixed.

The problem of repairing inconsistent knowledge bases has a long history within the communities of database theory and knowledge representation and reasoning, especially from the perspective of structured data. However, as the data available in real-world domains becomes more complex and interconnected, the need naturally arises for developing new types of repositories, representation languages, and semantics, to allow for more suitable ways to query and reason about it. Graph databases provide an effective way to represent relationships among semi-structured data, and allow processing and querying these connections efficiently. In this work, we focus on the problem of computing prioritized repairs over graph databases with data values, using a notion of consistency based on Reg-GXPath expressions as integrity constraints. We present several preference criteria based on the standard subset repair semantics, incorporating weights, multisets, and set-based priority levels. We study the most common repairing tasks, showing that it is possible to maintain the same computational complexity as in the case where no preference criterion is available for exploitation. To complete the picture, we explore the complexity of consistent query answering in this setting and obtain tight lower and upper bounds for all the preference criteria introduced.

Query evaluation over probabilistic databases is a notoriously intractable problem -- not only in combined complexity, but for many natural queries in data complexity as well. This motivates the study of probabilistic query evaluation through the lens of approximation algorithms, and particularly of combined FPRASes, whose runtime is polynomial in both the query and instance size. In this paper, we focus on tuple-independent probabilistic databases over binary signatures, which can be equivalently viewed as probabilistic graphs. We study in which cases we can devise combined FPRASes for probabilistic query evaluation in this setting. We settle the complexity of this problem for a variety of query and instance classes, by proving both approximability and (conditional) inapproximability results. This allows us to deduce many corollaries of possible independent interest. For example, we show how the results of Arenas et al. on counting fixed-length strings accepted by an NFA imply the existence of an FPRAS for the two-terminal network reliability problem on directed acyclic graphs: this was an open problem until now. We also show that one cannot extend a recent result of van Bremen and Meel that gives a combined FPRAS for self-join-free conjunctive queries of bounded hypertree width on probabilistic databases: neither the bounded-hypertree-width condition nor the self-join-freeness hypothesis can be relaxed. Finally, we complement all our inapproximability results with unconditional lower bounds, showing that DNNF provenance circuits must have at least moderately exponential size in combined complexity.

Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at //github.com/Eleanor-H/MUSTARD.

Large language models (LLMs) have performed well on several reasoning benchmarks, including ones that test analogical reasoning abilities. However, it has been debated whether they are actually performing humanlike abstract reasoning or instead employing less general processes that rely on similarity to what has been seen in their training data. Here we investigate the generality of analogy-making abilities previously claimed for LLMs (Webb, Holyoak, & Lu, 2023). We take one set of analogy problems used to evaluate LLMs and create a set of "counterfactual" variants-versions that test the same abstract reasoning abilities but that are likely dissimilar from any pre-training data. We test humans and three GPT models on both the original and counterfactual problems, and show that, while the performance of humans remains high for all the problems, the GPT models' performance declines sharply on the counterfactual set. This work provides evidence that, despite previously reported successes of LLMs on analogical reasoning, these models lack the robustness and generality of human analogy-making.

Quantifying the degree of similarity between images is a key copyright issue for image-based machine learning. In legal doctrine however, determining the degree of similarity between works requires subjective analysis, and fact-finders (judges and juries) can demonstrate considerable variability in these subjective judgement calls. Images that are structurally similar can be deemed dissimilar, whereas images of completely different scenes can be deemed similar enough to support a claim of copying. We seek to define and compute a notion of "conceptual similarity" among images that captures high-level relations even among images that do not share repeated elements or visually similar components. The idea is to use a base multi-modal model to generate "explanations" (captions) of visual data at increasing levels of complexity. Then, similarity can be measured by the length of the caption needed to discriminate between the two images: Two highly dissimilar images can be discriminated early in their description, whereas conceptually dissimilar ones will need more detail to be distinguished. We operationalize this definition and show that it correlates with subjective (averaged human evaluation) assessment, and beats existing baselines on both image-to-image and text-to-text similarity benchmarks. Beyond just providing a number, our method also offers interpretability by pointing to the specific level of granularity of the description where the source data are differentiated.

Implicit neural representations have emerged as a powerful technique for encoding complex continuous multidimensional signals as neural networks, enabling a wide range of applications in computer vision, robotics, and geometry. While Adam is commonly used for training due to its stochastic proficiency, it entails lengthy training durations. To address this, we explore alternative optimization techniques for accelerated training without sacrificing accuracy. Traditional second-order optimizers like L-BFGS are suboptimal in stochastic settings, making them unsuitable for large-scale data sets. Instead, we propose stochastic training using curvature-aware diagonal preconditioners, showcasing their effectiveness across various signal modalities such as images, shape reconstruction, and Neural Radiance Fields (NeRF).

To evaluate code large language models (LLMs), research has relied on a few small manually curated benchmarks, such as HumanEval and MBPP, which represent a narrow part of the real-world software domains. In this work, we introduce round-trip correctness (RTC) as an alternative evaluation method. RTC allows Code LLM evaluation on a broader spectrum of real-world software domains without the need for costly human curation. RTC rests on the idea that we can ask a model to make a prediction (e.g., describe some code using natural language), feed that prediction back (e.g., synthesize code from the predicted description), and check if this round-trip leads to code that is semantically equivalent to the original input. We show how to employ RTC to evaluate code synthesis and editing. We find that RTC strongly correlates with model performance on existing narrow-domain code synthesis benchmarks while allowing us to expand to a much broader set of domains and tasks which was not previously possible without costly human annotations.

Transfomer-based models have significantly advanced natural language processing, in particular the performance in text classification tasks. Nevertheless, these models face challenges in processing large files, primarily due to their input constraints, which are generally restricted to hundreds or thousands of tokens. Attempts to address this issue in existing models usually consist in extracting only a fraction of the essential information from lengthy inputs, while often incurring high computational costs due to their complex architectures. In this work, we address the challenge of classifying large files from the perspective of correlated multiple instance learning. We introduce LaFiCMIL, a method specifically designed for large file classification. LaFiCMIL is optimized for efficient operation on a single GPU, making it a versatile solution for binary, multi-class, and multi-label classification tasks. We conducted extensive experiments using seven diverse and comprehensive benchmark datasets to assess LaFiCMIL's effectiveness. By integrating BERT for feature extraction, LaFiCMIL demonstrates exceptional performance, setting new benchmarks across all datasets. A notable achievement of our approach is its ability to scale BERT to handle nearly 20,000 tokens while operating on a single GPU with 32GB of memory. This efficiency, coupled with its state-of-the-art performance, highlights LaFiCMIL's potential as a groundbreaking approach in the field of large file classification.

北京阿比特科技有限公司