This paper proposes an algorithm that uses geospatial analytics and the muting of physical resources in next-generation base stations (BSs) to avoid interference between cellular (or terrestrial) and satellite communication (non-terrestrial) systems. The information exchange between satellite and terrestrial stations is minimal, but a hybrid edge cloud node with access to estimated satellite trajectories can enable these BSs to take proactive steps to avoid interference. To validate the superiority of our proposed algorithm over a conventional method, we show the performance of the algorithm using two measures: number of concurrent uses of Doppler corrected radio frequency resources and the sum-rate capacity of the BSs. Our algorithm not only provides significant sum-rate capacity gains in both directions enabling better use of the spectrum, but also runs in polynomial time, making it suitable for real-time interference avoidance.
This paper investigates methods for improving generative data augmentation for deep learning. Generative data augmentation leverages the synthetic samples produced by generative models as an additional dataset for classification with small dataset settings. A key challenge of generative data augmentation is that the synthetic data contain uninformative samples that degrade accuracy. This is because the synthetic samples do not perfectly represent class categories in real data and uniform sampling does not necessarily provide useful samples for tasks. In this paper, we present a novel strategy for generative data augmentation called meta generative regularization (MGR). To avoid the degradation of generative data augmentation, MGR utilizes synthetic samples in the regularization term for feature extractors instead of in the loss function, e.g., cross-entropy. These synthetic samples are dynamically determined to minimize the validation losses through meta-learning. We observed that MGR can avoid the performance degradation of na\"ive generative data augmentation and boost the baselines. Experiments on six datasets showed that MGR is effective particularly when datasets are smaller and stably outperforms baselines.
To promote the generalization ability of breast tumor segmentation models, as well as to improve the segmentation performance for breast tumors with smaller size, low-contrast amd irregular shape, we propose a progressive dual priori network (PDPNet) to segment breast tumors from dynamic enhanced magnetic resonance images (DCE-MRI) acquired at different sites. The PDPNet first cropped tumor regions with a coarse-segmentation based localization module, then the breast tumor mask was progressively refined by using the weak semantic priori and cross-scale correlation prior knowledge. To validate the effectiveness of PDPNet, we compared it with several state-of-the-art methods on multi-center datasets. The results showed that, comparing against the suboptimal method, the DSC, SEN, KAPPA and HD95 of PDPNet were improved 3.63\%, 8.19\%, 5.52\%, and 3.66\% respectively. In addition, through ablations, we demonstrated that the proposed localization module can decrease the influence of normal tissues and therefore improve the generalization ability of the model. The weak semantic priors allow focusing on tumor regions to avoid missing small tumors and low-contrast tumors. The cross-scale correlation priors are beneficial for promoting the shape-aware ability for irregual tumors. Thus integrating them in a unified framework improved the multi-center breast tumor segmentation performance.
This paper presents a theoretical analysis of linear interpolation as a principled method for stabilizing (large-scale) neural network training. We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear interpolation can help by leveraging the theory of nonexpansive operators. We construct a new optimization scheme called relaxed approximate proximal point (RAPP), which is the first explicit method to achieve last iterate convergence rates for the full range of cohypomonotone problems. The construction extends to constrained and regularized settings. By replacing the inner optimizer in RAPP we rediscover the family of Lookahead algorithms for which we establish convergence in cohypomonotone problems even when the base optimizer is taken to be gradient descent ascent. The range of cohypomonotone problems in which Lookahead converges is further expanded by exploiting that Lookahead inherits the properties of the base optimizer. We corroborate the results with experiments on generative adversarial networks which demonstrates the benefits of the linear interpolation present in both RAPP and Lookahead.
This paper provides norm-based generalization bounds for the Transformer architecture that do not depend on the input sequence length. We employ a covering number based approach to prove our bounds. We use three novel covering number bounds for the function class of bounded linear transformations to upper bound the Rademacher complexity of the Transformer. Furthermore, we show this generalization bound applies to the common Transformer training technique of masking and then predicting the masked word. We also run a simulated study on a sparse majority data set that empirically validates our theoretical findings.
We propose a differentiable vertex fitting algorithm that can be used for secondary vertex fitting, and that can be seamlessly integrated into neural networks for jet flavour tagging. Vertex fitting is formulated as an optimization problem where gradients of the optimized solution vertex are defined through implicit differentiation and can be passed to upstream or downstream neural network components for network training. More broadly, this is an application of differentiable programming to integrate physics knowledge into neural network models in high energy physics. We demonstrate how differentiable secondary vertex fitting can be integrated into larger transformer-based models for flavour tagging and improve heavy flavour jet classification.
Bayesian hypothesis testing leverages posterior probabilities, Bayes factors, or credible intervals to assess characteristics that summarize data. We propose a framework for power curve approximation with such hypothesis tests that assumes data are generated using statistical models with fixed parameters for the purposes of sample size determination. We present a fast approach to explore the sampling distribution of posterior probabilities when the conditions for the Bernstein-von Mises theorem are satisfied. We extend that approach to facilitate targeted sampling from the approximate sampling distribution of posterior probabilities for each sample size explored. These sampling distributions are used to construct power curves for various types of posterior analyses. Our resulting method for power curve approximation is orders of magnitude faster than conventional power curve estimation for Bayesian hypothesis tests. We also prove the consistency of the corresponding power estimates and sample size recommendations under certain conditions.
Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.
Learning latent representations of nodes in graphs is an important and ubiquitous task with widespread applications such as link prediction, node classification, and graph visualization. Previous methods on graph representation learning mainly focus on static graphs, however, many real-world graphs are dynamic and evolve over time. In this paper, we present Dynamic Self-Attention Network (DySAT), a novel neural architecture that operates on dynamic graphs and learns node representations that capture both structural properties and temporal evolutionary patterns. Specifically, DySAT computes node representations by jointly employing self-attention layers along two dimensions: structural neighborhood and temporal dynamics. We conduct link prediction experiments on two classes of graphs: communication networks and bipartite rating networks. Our experimental results show that DySAT has a significant performance gain over several different state-of-the-art graph embedding baselines.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.