As artificial intelligence (AI) rapidly approaches human-level performance in medical imaging, it is crucial that it does not exacerbate or propagate healthcare disparities. Prior research has established AI's capacity to infer demographic data from chest X-rays, leading to a key concern: do models using demographic shortcuts have unfair predictions across subpopulations? In this study, we conduct a thorough investigation into the extent to which medical AI utilizes demographic encodings, focusing on potential fairness discrepancies within both in-distribution training sets and external test sets. Our analysis covers three key medical imaging disciplines: radiology, dermatology, and ophthalmology, and incorporates data from six global chest X-ray datasets. We confirm that medical imaging AI leverages demographic shortcuts in disease classification. While correcting shortcuts algorithmically effectively addresses fairness gaps to create "locally optimal" models within the original data distribution, this optimality is not true in new test settings. Surprisingly, we find that models with less encoding of demographic attributes are often most "globally optimal", exhibiting better fairness during model evaluation in new test environments. Our work establishes best practices for medical imaging models which maintain their performance and fairness in deployments beyond their initial training contexts, underscoring critical considerations for AI clinical deployments across populations and sites.
The recommendation of medication is a vital aspect of intelligent healthcare systems, as it involves prescribing the most suitable drugs based on a patient's specific health needs. Unfortunately, many sophisticated models currently in use tend to overlook the nuanced semantics of medical data, while only relying heavily on identities. Furthermore, these models face significant challenges in handling cases involving patients who are visiting the hospital for the first time, as they lack prior prescription histories to draw upon. To tackle these issues, we harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs). Our research aims to transform existing medication recommendation methodologies using LLMs. In this paper, we introduce a novel approach called Large Language Model Distilling Medication Recommendation (LEADER). We begin by creating appropriate prompt templates that enable LLMs to suggest medications effectively. However, the straightforward integration of LLMs into recommender systems leads to an out-of-corpus issue specific to drugs. We handle it by adapting the LLMs with a novel output layer and a refined tuning loss function. Although LLM-based models exhibit remarkable capabilities, they are plagued by high computational costs during inference, which is impractical for the healthcare sector. To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model. Extensive experiments conducted on two real-world datasets, MIMIC-III and MIMIC-IV, demonstrate that our proposed model not only delivers effective results but also is efficient. To ease the reproducibility of our experiments, we release the implementation code online.
A better understanding of interactive pedestrian behavior in critical traffic situations is essential for the development of enhanced pedestrian safety systems. Real-world traffic observations play a decisive role in this, since they represent behavior in an unbiased way. In this work, we present an approach of how a subset of very considerable pedestrian-vehicle interactions can be derived from a camera-based observation system. For this purpose, we have examined road user trajectories automatically for establishing temporal and spatial relationships, using 110h hours of video recordings. In order to identify critical interactions, our approach combines the metric post-encroachment time with a newly introduced motion adaption metric. From more than 11,000 reconstructed pedestrian trajectories, 259 potential scenarios remained, using a post-encroachment time threshold of 2s. However, in 95% of cases, no adaptation of the pedestrian behavior was observed due to avoiding criticality. Applying the proposed motion adaption metric, only 21 critical scenarios remained. Manual investigations revealed that critical pedestrian vehicle interactions were present in 7 of those. They were further analyzed and made publicly available for developing pedestrian behavior models3. The results indicate that critical interactions in which the pedestrian perceives and reacts to the vehicle at a relatively late stage can be extracted using the proposed method.
In many applications, researchers are interested in the direct and indirect causal effects of a treatment or exposure on an outcome of interest. Mediation analysis offers a rigorous framework for identifying and estimating these causal effects. For binary treatments, efficient estimators for the direct and indirect effects are presented in Tchetgen Tchetgen and Shpitser (2012) based on the influence function of the parameter of interest. These estimators possess desirable properties, such as multiple-robustness and asymptotic normality, while allowing for slower than root-n rates of convergence for the nuisance parameters. However, in settings involving continuous treatments, these influence function-based estimators are not readily applicable without making strong parametric assumptions. In this work, utilizing a kernel-smoothing approach, we propose an estimator suitable for settings with continuous treatments inspired by the influence function-based estimator of Tchetgen Tchetgen and Shpitser (2012). Our proposed approach employs cross-fitting, relaxing the smoothness requirements on the nuisance functions, and allowing them to be estimated at slower rates than the target parameter. Additionally, similar to influence function-based estimators, our proposed estimator is multiply robust and asymptotically normal, making it applicable for inference in settings where a parametric model cannot be assumed.
Business Process Simulation (BPS) is a common approach to estimate the impact of changes to a business process on its performance measures. For example, it allows us to estimate what would be the cycle time of a process if we automated one of its activities, or if some resources become unavailable. The starting point of BPS is a business process model annotated with simulation parameters (a BPS model). In traditional approaches, BPS models are manually designed by modeling specialists. This approach is time-consuming and error-prone. To address this shortcoming, several studies have proposed methods to automatically discover BPS models from event logs via process mining techniques. However, current techniques in this space discover BPS models that only capture waiting times caused by resource contention or resource unavailability. Oftentimes, a considerable portion of the waiting time in a business process corresponds to extraneous delays, e.g., a resource waits for the customer to return a phone call. This article proposes a method that discovers extraneous delays from event logs of business process executions. The proposed approach computes, for each pair of causally consecutive activity instances in the event log, the time when the target activity instance should theoretically have started, given the availability of the relevant resource. Based on the difference between the theoretical and the actual start times, the approach estimates the distribution of extraneous delays, and it enhances the BPS model with timer events to capture these delays. An empirical evaluation involving synthetic and real-life logs shows that the approach produces BPS models that better reflect the temporal dynamics of the process, relative to BPS models that do not capture extraneous delays.
Artificial intelligence (AI) in healthcare, especially in medical imaging, faces challenges due to data scarcity and privacy concerns. Addressing these, we introduce Med-DDPM, a diffusion model designed for 3D semantic brain MRI synthesis. This model effectively tackles data scarcity and privacy issues by integrating semantic conditioning. This involves the channel-wise concatenation of a conditioning image to the model input, enabling control in image generation. Med-DDPM demonstrates superior stability and performance compared to existing 3D brain imaging synthesis methods. It generates diverse, anatomically coherent images with high visual fidelity. In terms of dice score accuracy in the tumor segmentation task, Med-DDPM achieves 0.6207, close to the 0.6531 accuracy of real images, and outperforms baseline models. Combined with real images, it further increases segmentation accuracy to 0.6675, showing the potential of our proposed method for data augmentation. This model represents the first use of a diffusion model in 3D semantic brain MRI synthesis, producing high-quality images. Its semantic conditioning feature also shows potential for image anonymization in biomedical imaging, addressing data and privacy issues. We provide the code and model weights for Med-DDPM on our GitHub repository (//github.com/mobaidoctor/med-ddpm/) to support reproducibility.
Efficient parallel computing has become a pivotal element in advancing artificial intelligence. Yet, the deployment of Spiking Neural Networks (SNNs) in this domain is hampered by their inherent sequential computational dependency. This constraint arises from the need for each time step's processing to rely on the preceding step's outcomes, significantly impeding the adaptability of SNN models to massively parallel computing environments. Addressing this challenge, our paper introduces the innovative Parallel Spiking Unit (PSU) and its two derivatives, the Input-aware PSU (IPSU) and Reset-aware PSU (RPSU). These variants skillfully decouple the leaky integration and firing mechanisms in spiking neurons while probabilistically managing the reset process. By preserving the fundamental computational attributes of the spiking neuron model, our approach enables the concurrent computation of all membrane potential instances within the SNN, facilitating parallel spike output generation and substantially enhancing computational efficiency. Comprehensive testing across various datasets, including static and sequential images, Dynamic Vision Sensor (DVS) data, and speech datasets, demonstrates that the PSU and its variants not only significantly boost performance and simulation speed but also augment the energy efficiency of SNNs through enhanced sparsity in neural activity. These advancements underscore the potential of our method in revolutionizing SNN deployment for high-performance parallel computing applications.
As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.
Aspect based sentiment analysis (ABSA) can provide more detailed information than general sentiment analysis, because it aims to predict the sentiment polarities of the given aspects or entities in text. We summarize previous approaches into two subtasks: aspect-category sentiment analysis (ACSA) and aspect-term sentiment analysis (ATSA). Most previous approaches employ long short-term memory and attention mechanisms to predict the sentiment polarity of the concerned targets, which are often complicated and need more training time. We propose a model based on convolutional neural networks and gating mechanisms, which is more accurate and efficient. First, the novel Gated Tanh-ReLU Units can selectively output the sentiment features according to the given aspect or entity. The architecture is much simpler than attention layer used in the existing models. Second, the computations of our model could be easily parallelized during training, because convolutional layers do not have time dependency as in LSTM layers, and gating units also work independently. The experiments on SemEval datasets demonstrate the efficiency and effectiveness of our models.