亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We prove 2-categorical conservativity for any {0,T}-free fragment of MALL over its corresponding intuitionistic version: that is, that the universal map from a closed symmetric monoidal category to the *-autonomous category that it freely generates is fully faithful, and similarly for other doctrines. This implies that linear logics and graphical calculi for *-autonomous categories can also be interpreted canonically in closed symmetric monoidal categories. In particular, every closed symmetric monoidal category can be fully embedded in a *-autonomous category, preserving both tensor products and internal-homs. In fact, we prove this directly first with a Yoneda-style embedding (an enhanced "Hyland envelope" that can be regarded as a polycategorical form of Day convolution), and deduce 2-conservativity afterwards from Hyland-Schalk double gluing and a technique of Lafont. The same is true for other fragments of *-autonomous structure, such as linear distributivity, and the embedding can be enhanced to preserve any desired family of nonempty limits and colimits.

相關內容

We introduce and analyze various Regularized Combined Field Integral Equations (CFIER) formulations of time-harmonic Navier equations in media with piece-wise constant material properties. These formulations can be derived systematically starting from suitable coercive approximations of Dirichlet-to-Neumann operators (DtN), and we present a periodic pseudodifferential calculus framework within which the well posedness of CIER formulations can be established. We also use the DtN approximations to derive and analyze Optimized Schwarz (OS) methods for the solution of elastodynamics transmission problems. The pseudodifferential calculus we develop in this paper relies on careful singularity splittings of the kernels of Navier boundary integral operators which is also the basis of high-order Nystr\"om quadratures for their discretizations. Based on these high-order discretizations we investigate the rate of convergence of iterative solvers applied to CFIER and OS formulations of scattering and transmission problems. We present a variety of numerical results that illustrate that the CFIER methodology leads to important computational savings over the classical CFIE one, whenever iterative solvers are used for the solution of the ensuing discretized boundary integral equations. Finally, we show that the OS methods are competitive in the high-frequency high-contrast regime.

Autonomous driving is an active research topic in both academia and industry. However, most of the existing solutions focus on improving the accuracy by training learnable models with centralized large-scale data. Therefore, these methods do not take into account the user's privacy. In this paper, we present a new approach to learn autonomous driving policy while respecting privacy concerns. We propose a peer-to-peer Deep Federated Learning (DFL) approach to train deep architectures in a fully decentralized manner and remove the need for central orchestration. We design a new Federated Autonomous Driving network (FADNet) that can improve the model stability, ensure convergence, and handle imbalanced data distribution problems while is being trained with federated learning methods. Intensively experimental results on three datasets show that our approach with FADNet and DFL achieves superior accuracy compared with other recent methods. Furthermore, our approach can maintain privacy by not collecting user data to a central server.

Developing technology and changing lifestyles have made online grocery delivery applications an indispensable part of urban life. Since the beginning of the COVID-19 pandemic, the demand for such applications has dramatically increased, creating new competitors that disrupt the market. An increasing level of competition might prompt companies to frequently restructure their marketing and product pricing strategies. Therefore, identifying the change patterns in product prices and sales volumes would provide a competitive advantage for the companies in the marketplace. In this paper, we investigate alternative clustering methodologies to group the products based on the price patterns and sales volumes. We propose a novel distance metric that takes into account how product prices and sales move together rather than calculating the distance using numerical values. We compare our approach with traditional clustering algorithms, which typically rely on generic distance metrics such as Euclidean distance, and image clustering approaches that aim to group data by capturing its visual patterns. We evaluate the performances of different clustering algorithms using our custom evaluation metric as well as Calinski Harabasz and Davies Bouldin indices, which are commonly used internal validity metrics. We conduct our numerical study using a propriety price dataset from an online food and grocery delivery company, and the publicly available Favorita sales dataset. We find that our proposed clustering approach and image clustering both perform well for finding the products with similar price and sales patterns within large datasets.

Category theory can be used to state formulas in First-Order Logic without using set membership. Several notable results in logic such as proof of the continuum hypothesis can be elegantly rewritten in category theory. We propose in this paper a reformulation of the usual set-theoretical semantics of the description logic $\mathcal{ALC}$ by using categorical language. In this setting, ALC concepts are represented as objects, concept subsumptions as arrows, and memberships as logical quantifiers over objects and arrows of categories. Such a category-theoretical semantics provides a more modular representation of the semantics of $\mathcal{ALC}$ and a new way to design algorithms for reasoning.

This article presents an in-depth review of the topic of path following for autonomous robotic vehicles, with a specific focus on vehicle motion in two dimensional space (2D). From a control system standpoint, path following can be formulated as the problem of stabilizing a path following error system that describes the dynamics of position and possibly orientation errors of a vehicle with respect to a path, with the errors defined in an appropriate reference frame. In spite of the large variety of path following methods described in the literature we show that, in principle, most of them can be categorized in two groups: stabilization of the path following error system expressed either in the vehicle's body frame or in a frame attached to a "reference point" moving along the path, such as a Frenet-Serret (F-S) frame or a Parallel Transport (P-T) frame. With this observation, we provide a unified formulation that is simple but general enough to cover many methods available in the literature. We then discuss the advantages and disadvantages of each method, comparing them from the design and implementation standpoint. We further show experimental results of the path following methods obtained from field trials testing with under-actuated and fully-actuated autonomous marine vehicles. In addition, we introduce open-source Matlab and Gazebo/ROS simulation toolboxes that are helpful in testing path following methods prior to their integration in the combined guidance, navigation, and control systems of autonomous vehicles.

In this paper, we study the problem of exploring an unknown Region Of Interest (ROI) with a team of aerial robots. The size and shape of the ROI are unknown to the robots. The objective is to find a tour for each robot such that each point in the ROI must be visible from the field-of-view of some robot along its tour. In conventional exploration using ground robots, the ROI boundary is typically also as an obstacle and robots are naturally constrained to the interior of this ROI. Instead, we study the case where aerial robots are not restricted to flying inside the ROI (and can fly over the boundary of the ROI). We propose a recursive depth-first search-based algorithm that yields a constant competitive ratio for the exploration problem. Our analysis also extends to the case where the ROI is translating, \eg, in the case of marine plumes. In the simpler version of the problem where the ROI is modeled as a 2D grid, the competitive ratio is $\frac{2(S_r+S_p)(R+\lfloor\log{R}\rfloor)}{(S_r-S_p)(1+\lfloor\log{R}\rfloor)}$ where $R$ is the number of robots, and $S_r$ and $S_p$ are the robot speed and the ROI speed, respectively. We also consider a more realistic scenario where the ROI shape is not restricted to grid cells but an arbitrary shape. We show our algorithm has $\frac{2(S_r+S_p)(18R+\lfloor\log{R}\rfloor)}{(S_r-S_p)(1+\lfloor\log{R}\rfloor)}$ competitive ratio under some conditions. We empirically verify our algorithm using simulations as well as a proof-of-concept experiment mapping a 2D ROI using an aerial robot with a downwards-facing camera.

Decomposition-based evolutionary algorithms have become fairly popular for many-objective optimization in recent years. However, the existing decomposition methods still are quite sensitive to the various shapes of frontiers of many-objective optimization problems (MaOPs). On the one hand, the cone decomposition methods such as the penalty-based boundary intersection (PBI) are incapable of acquiring uniform frontiers for MaOPs with very convex frontiers. On the other hand, the parallel reference lines of the parallel decomposition methods including the normal boundary intersection (NBI) might result in poor diversity because of under-sampling near the boundaries for MaOPs with concave frontiers. In this paper, a collaborative decomposition method is first proposed to integrate the advantages of parallel decomposition and cone decomposition to overcome their respective disadvantages. This method inherits the NBI-style Tchebycheff function as a convergence measure to heighten the convergence and uniformity of distribution of the PBI method. Moreover, this method also adaptively tunes the extent of rotating an NBI reference line towards a PBI reference line for every subproblem to enhance the diversity of distribution of the NBI method. Furthermore, a collaborative decomposition-based evolutionary algorithm (CoDEA) is presented for many-objective optimization. A collaborative decomposition-based environmental selection mechanism is primarily designed in CoDEA to rank all the individuals associated with the same PBI reference line in the boundary layer and pick out the best ranks. CoDEA is compared with several popular algorithms on 85 benchmark test instances. The experimental results show that CoDEA achieves high competitiveness benefiting from the collaborative decomposition maintaining a good balance among the convergence, uniformity, and diversity of distribution.

Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

Multi-view networks are ubiquitous in real-world applications. In order to extract knowledge or business value, it is of interest to transform such networks into representations that are easily machine-actionable. Meanwhile, network embedding has emerged as an effective approach to generate distributed network representations. Therefore, we are motivated to study the problem of multi-view network embedding, with a focus on the characteristics that are specific and important in embedding this type of networks. In our practice of embedding real-world multi-view networks, we identify two such characteristics, which we refer to as preservation and collaboration. We then explore the feasibility of achieving better embedding quality by simultaneously modeling preservation and collaboration, and propose the mvn2vec algorithms. With experiments on a series of synthetic datasets, an internal Snapchat dataset, and two public datasets, we further confirm the presence and importance of preservation and collaboration. These experiments also demonstrate that better embedding can be obtained by simultaneously modeling the two characteristics, while not over-complicating the model or requiring additional supervision.

北京阿比特科技有限公司