Simulation-based testing remains the main approach for validating Autonomous Driving Systems. We propose a rigorous test method based on breaking down scenarios into simple ones, taking into account the fact that autopilots make decisions according to traffic rules whose application depends on local knowledge and context. This leads us to consider the autopilot as a dynamic system receiving three different types of vistas as input, each characterizing a specific driving operation and a corresponding control policy. The test method for the considered vista types generates test cases for critical configurations that place the vehicle under test in critical situations characterized by the transition from cautious behavior to progression in order to clear an obstacle. The test cases thus generated are realistic, i.e., they determine the initial conditions from which safe control policies are possible, based on knowledge of the vehicle's dynamic characteristics. Constraint analysis identifies the most critical test cases, whose success implies the validity of less critical ones. Test coverage can therefore be greatly simplified. Critical test cases reveal major defects in Apollo, Autoware, and the Carla and LGSVL autopilots. Defects include accidents, software failures, and traffic rule violations that would be difficult to detect by random simulation, as the test cases lead to situations characterized by finely-tuned parameters of the vehicles involved, such as their relative position and speed. Our results corroborate real-life observations and confirm that autonomous driving systems still have a long way to go before offering acceptable safety guarantees.
State machines are used in engineering many types of software-intensive systems. UML State Machines extend simple finite state machines with powerful constructs. Among the many extensions, there is one seemingly simple and innocent language construct that fundamentally changes state machines' reactive model of computation: doActivity behaviors. DoActivity behaviors describe behavior that is executed independently from the state machine once entered in a given state, typically modeling complex computation or communication as background tasks. However, the UML specification or textbooks are vague about how the doActivity behavior construct should be appropriately used. This lack of guidance is a severe issue as, when improperly used, doActivities can cause concurrent, non-deterministic bugs that are especially challenging to find and could ruin a seemingly correct software design. The Precise Semantics of UML State Machines (PSSM) specification introduced detailed operational semantics for state machines. To the best of our knowledge, there is no rigorous review yet of doActivity's semantics as specified in PSSM. We analyzed the semantics by collecting evidence from cross-checking the text of the specification, its semantic model and executable test cases, and the simulators supporting PSSM. We synthesized insights about subtle details and emergent behaviors relevant to tool developers and advanced modelers. We reported inconsistencies and missing clarifications in more than 20 issues to the standardization committee. Based on these insights, we studied 11 patterns for doActivities detailing the consequences of using a doActivity in a given situation and discussing countermeasures or alternative design choices. We hope that our analysis of the semantics and the patterns help vendors develop conformant simulators or verification tools and engineers design better state machine models.
Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper.
We present a new approach for Neural Optimal Transport (NOT) training procedure, capable of accurately and efficiently estimating optimal transportation plan via specific regularization on dual Kantorovich potentials. The main bottleneck of existing NOT solvers is associated with the procedure of finding a near-exact approximation of the conjugate operator (i.e., the c-transform), which is done either by optimizing over non-convex max-min objectives or by the computationally intensive fine-tuning of the initial approximated prediction. We resolve both issues by proposing a new, theoretically justified loss in the form of expectile regularisation which enforces binding conditions on the learning process of dual potentials. Such a regularization provides the upper bound estimation over the distribution of possible conjugate potentials and makes the learning stable, completely eliminating the need for additional extensive fine-tuning. Proposed method, called Expectile-Regularised Neural Optimal Transport (ENOT), outperforms previous state-of-the-art approaches on the established Wasserstein-2 benchmark tasks by a large margin (up to a 3-fold improvement in quality and up to a 10-fold improvement in runtime). Moreover, we showcase performance of ENOT for varying cost functions on different tasks such as image generation, showing robustness of proposed algorithm. OTT-JAX library includes our implementation of ENOT algorithm //ott-jax.readthedocs.io/en/latest/tutorials/ENOT.html
Robotic manipulation requires accurate motion and physical interaction control. However, current robot learning approaches focus on motion-centric action spaces that do not explicitly give the policy control over the interaction. In this paper, we discuss the repercussions of this choice and argue for more interaction-explicit action spaces in robot learning.
Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.