亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Existing efforts to improve logical reasoning ability of language models have predominantly relied on supervised fine-tuning, hindering generalization to new domains and/or tasks. The development of Large Langauge Models (LLMs) has demonstrated the capacity of compressing abundant knowledge into a single proxy, enabling them to tackle multiple tasks effectively. Our preliminary experiments, nevertheless, show that LLMs do not show capability on logical reasoning. The performance of LLMs on logical reasoning benchmarks is far behind the existing state-of-the-art baselines. In this paper, we make the first attempt to investigate the feasibility of incorporating logical knowledge through self-supervised post-training, and activating it via in-context learning, which we termed as LogicLLM. Specifically, we devise an auto-regressive objective variant of MERIt and integrate it with two LLM series, i.e., FLAN-T5 and LLaMA, with parameter size ranging from 3 billion to 13 billion. The results on two challenging logical reasoning benchmarks demonstrate the effectiveness of LogicLLM. Besides, we conduct extensive ablation studies to analyze the key factors in designing logic-oriented proxy tasks.

相關內容

Artificial neural networks often suffer from catastrophic forgetting, where learning new concepts leads to a complete loss of previously acquired knowledge. We observe that this issue is particularly magnified in vision transformers (ViTs), where post-pre-training and fine-tuning on new tasks can significantly degrade the model's original general abilities. For instance, a DINO ViT-Base/16 pre-trained on ImageNet-1k loses over 70% accuracy on ImageNet-1k after just 10 iterations of fine-tuning on CIFAR-100. Overcoming this stability-plasticity dilemma is crucial for enabling ViTs to continuously learn and adapt to new domains while preserving their initial knowledge. In this work, we study two new parameter-efficient fine-tuning strategies: (1)~Block Expansion, and (2) Low-rank adaptation (LoRA). Our experiments reveal that using either Block Expansion or LoRA on self-supervised pre-trained ViTs surpass fully fine-tuned ViTs in new domains while offering significantly greater parameter efficiency. Notably, we find that Block Expansion experiences only a minimal performance drop in the pre-training domain, thereby effectively mitigating catastrophic forgetting in pre-trained ViTs.

We investigate the role of various demonstration components in the in-context learning (ICL) performance of large language models (LLMs). Specifically, we explore the impacts of ground-truth labels, input distribution, and complementary explanations, particularly when these are altered or perturbed. We build on previous work, which offers mixed findings on how these elements influence ICL. To probe these questions, we employ explainable NLP (XNLP) methods and utilize saliency maps of contrastive demonstrations for both qualitative and quantitative analysis. Our findings reveal that flipping ground-truth labels significantly affects the saliency, though it's more noticeable in larger LLMs. Our analysis of the input distribution at a granular level reveals that changing sentiment-indicative terms in a sentiment analysis task to neutral ones does not have as substantial an impact as altering ground-truth labels. Finally, we find that the effectiveness of complementary explanations in boosting ICL performance is task-dependent, with limited benefits seen in sentiment analysis tasks compared to symbolic reasoning tasks. These insights are critical for understanding the functionality of LLMs and guiding the development of effective demonstrations, which is increasingly relevant in light of the growing use of LLMs in applications such as ChatGPT. Our research code is publicly available at //github.com/paihengxu/XICL.

The proliferation of large language models (LLMs) and their integration into multi-agent systems has paved the way for sophisticated automation in various domains. This paper introduces AutoGenesisAgent, a multi-agent system that autonomously designs and deploys other multi-agent systems tailored for specific tasks. AutoGenesisAgent comprises several specialized agents including System Understanding, System Design, Agent Generator, and several others that collectively manage the lifecycle of creating functional multi-agent systems from initial concept to deployment. Each agent in AutoGenesisAgent has distinct responsibilities ranging from interpreting input prompts to optimizing system performance, culminating, in the deployment of a ready-to-use system. This proof-of-concept study discusses the design, implementation, and lessons learned from developing AutoGenesisAgent, highlighting its capability to generate and refine multi-agent systems autonomously, thereby reducing the need for extensive human oversight in the initial stages of system design. Keywords: multi-agent systems, large language models, system design automation, agent architecture, autonomous systems, software deployment

Non-malleable extractors are generalizations and strengthening of standard randomness extractors, that are resilient to adversarial tampering. Such extractors have wide applications in cryptography and explicit construction of extractors. In the well-studied models of two-source and affine non-malleable extractors, the previous best constructions only work for entropy rate $>2/3$ and $1-\gamma$ respectively by Li (FOCS' 23). We present explicit constructions of two-source and affine non-malleable extractors that match the state-of-the-art constructions of standard ones for small entropy. Our main results include two-source and affine non-malleable extractors (over $\mathsf{F}_2$) for sources on $n$ bits with min-entropy $k \ge \log^C n$ and polynomially small error, matching the parameters of standard extractors by Chattopadhyay and Zuckerman (STOC' 16, Annals of Mathematics' 19) and Li (FOCS' 16), as well as those with min-entropy $k = O(\log n)$ and constant error, matching the parameters of standard extractors by Li (FOCS' 23). Our constructions significantly improve previous results, and the parameters (entropy requirement and error) are the best possible without first improving the constructions of standard extractors. In addition, our improved affine non-malleable extractors give strong lower bounds for a certain kind of read-once linear branching programs, recently introduced by Gryaznov, Pudl\'{a}k, and Talebanfard (CCC' 22) as a generalization of several well-studied computational models. These bounds match the previously best-known average-case hardness results given by Chattopadhyay and Liao (CCC' 23) and Li (FOCS' 23), where the branching program size lower bounds are close to optimal, but the explicit functions we use here are different.\ Our results also suggest a possible deeper connection between non-malleable extractors and standard ones.

Although the capabilities of large language models (LLMs) ideally scale up with increasing data and compute, they are inevitably constrained by limited resources in reality. Suppose we have a moderately trained LLM (e.g., trained to align with human preference) in hand, can we further exploit its potential and cheaply acquire a stronger model? In this paper, we propose a simple method called ExPO to boost LLMs' alignment with human preference. ExPO assumes that a medium-aligned model can be interpolated between a less-aligned (weaker) model, e.g., the initial SFT model, and a better-aligned (stronger) one, thereby directly obtaining this stronger model by extrapolating from the weights of the former two relatively weaker models. On the AlpacaEval 2.0 benchmark, we show that ExPO pushes models trained with less preference data (e.g., 10% or 20%) to reach and even surpass the fully-trained one, without any additional training. Furthermore, ExPO also significantly improves off-the-shelf DPO/RLHF models and exhibits decent scalability across model sizes from 7B to 70B. Our work demonstrates the efficacy of model extrapolation in exploiting LLMs' capabilities, suggesting a promising direction that deserves future exploration.

Despite the exceptional performance of multi-modal large language models (MLLMs), their deployment requires substantial computational resources. Once malicious users induce high energy consumption and latency time (energy-latency cost), it will exhaust computational resources and harm availability of service. In this paper, we investigate this vulnerability for MLLMs, particularly image-based and video-based ones, and aim to induce high energy-latency cost during inference by crafting an imperceptible perturbation. We find that high energy-latency cost can be manipulated by maximizing the length of generated sequences, which motivates us to propose verbose samples, including verbose images and videos. Concretely, two modality non-specific losses are proposed, including a loss to delay end-of-sequence (EOS) token and an uncertainty loss to increase the uncertainty over each generated token. In addition, improving diversity is important to encourage longer responses by increasing the complexity, which inspires the following modality specific loss. For verbose images, a token diversity loss is proposed to promote diverse hidden states. For verbose videos, a frame feature diversity loss is proposed to increase the feature diversity among frames. To balance these losses, we propose a temporal weight adjustment algorithm. Experiments demonstrate that our verbose samples can largely extend the length of generated sequences.

Vision-language models, while effective in general domains and showing strong performance in diverse multi-modal applications like visual question-answering (VQA), struggle to maintain the same level of effectiveness in more specialized domains, e.g., medical. We propose a medical vision-language model that integrates large vision and language models adapted for the medical domain. This model goes through three stages of parameter-efficient training using three separate biomedical and radiology multi-modal visual and text datasets. The proposed model achieves state-of-the-art performance on the SLAKE 1.0 medical VQA (MedVQA) dataset with an overall accuracy of 87.5% and demonstrates strong performance on another MedVQA dataset, VQA-RAD, achieving an overall accuracy of 73.2%.

Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.

Recently, various auxiliary tasks have been proposed to accelerate representation learning and improve sample efficiency in deep reinforcement learning (RL). However, existing auxiliary tasks do not take the characteristics of RL problems into consideration and are unsupervised. By leveraging returns, the most important feedback signals in RL, we propose a novel auxiliary task that forces the learnt representations to discriminate state-action pairs with different returns. Our auxiliary loss is theoretically justified to learn representations that capture the structure of a new form of state-action abstraction, under which state-action pairs with similar return distributions are aggregated together. In low data regime, our algorithm outperforms strong baselines on complex tasks in Atari games and DeepMind Control suite, and achieves even better performance when combined with existing auxiliary tasks.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

北京阿比特科技有限公司