Multilayer neural networks set the current state of the art for many technical classification problems. But, these networks are still, essentially, black boxes in terms of analyzing them and predicting their performance. Here, we develop a statistical theory for the one-layer perceptron and show that it can predict performances of a surprisingly large variety of neural networks with different architectures. A general theory of classification with perceptrons is developed by generalizing an existing theory for analyzing reservoir computing models and connectionist models for symbolic reasoning known as vector symbolic architectures. Our statistical theory offers three formulas leveraging the signal statistics with increasing detail. The formulas are analytically intractable, but can be evaluated numerically. The description level that captures maximum details requires stochastic sampling methods. Depending on the network model, the simpler formulas already yield high prediction accuracy. The quality of the theory predictions is assessed in three experimental settings, a memorization task for echo state networks (ESNs) from reservoir computing literature, a collection of classification datasets for shallow randomly connected networks, and the ImageNet dataset for deep convolutional neural networks. We find that the second description level of the perceptron theory can predict the performance of types of ESNs, which could not be described previously. The theory can predict deep multilayer neural networks by being applied to their output layer. While other methods for prediction of neural networks performance commonly require to train an estimator model, the proposed theory requires only the first two moments of the distribution of the postsynaptic sums in the output neurons. The perceptron theory compares favorably to other methods that do not rely on training an estimator model.
Emulator embedded neural networks, which are a type of physics informed neural network, leverage multi-fidelity data sources for efficient design exploration of aerospace engineering systems. Multiple realizations of the neural network models are trained with different random initializations. The ensemble of model realizations is used to assess epistemic modeling uncertainty caused due to lack of training samples. This uncertainty estimation is crucial information for successful goal-oriented adaptive learning in an aerospace system design exploration. However, the costs of training the ensemble models often become prohibitive and pose a computational challenge, especially when the models are not trained in parallel during adaptive learning. In this work, a new type of emulator embedded neural network is presented using the rapid neural network paradigm. Unlike the conventional neural network training that optimizes the weights and biases of all the network layers by using gradient-based backpropagation, rapid neural network training adjusts only the last layer connection weights by applying a linear regression technique. It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy. The proposed method is demonstrated on multiple analytical examples, as well as an aerospace flight parameter study of a generic hypersonic vehicle.
Convolutional neural networks (CNNs) are trained using stochastic gradient descent (SGD)-based optimizers. Recently, the adaptive moment estimation (Adam) optimizer has become very popular due to its adaptive momentum, which tackles the dying gradient problem of SGD. Nevertheless, existing optimizers are still unable to exploit the optimization curvature information efficiently. This paper proposes a new AngularGrad optimizer that considers the behavior of the direction/angle of consecutive gradients. This is the first attempt in the literature to exploit the gradient angular information apart from its magnitude. The proposed AngularGrad generates a score to control the step size based on the gradient angular information of previous iterations. Thus, the optimization steps become smoother as a more accurate step size of immediate past gradients is captured through the angular information. Two variants of AngularGrad are developed based on the use of Tangent or Cosine functions for computing the gradient angular information. Theoretically, AngularGrad exhibits the same regret bound as Adam for convergence purposes. Nevertheless, extensive experiments conducted on benchmark data sets against state-of-the-art methods reveal a superior performance of AngularGrad. The source code will be made publicly available at: //github.com/mhaut/AngularGrad.
Proposed as a solution to the inherent black-box limitations of graph neural networks (GNNs), post-hoc GNN explainers aim to provide precise and insightful explanations of the behaviours exhibited by trained GNNs. Despite their recent notable advancements in academic and industrial contexts, the robustness of post-hoc GNN explainers remains unexplored when confronted with label noise. To bridge this gap, we conduct a systematic empirical investigation to evaluate the efficacy of diverse post-hoc GNN explainers under varying degrees of label noise. Our results reveal several key insights: Firstly, post-hoc GNN explainers are susceptible to label perturbations. Secondly, even minor levels of label noise, inconsequential to GNN performance, harm the quality of generated explanations substantially. Lastly, we engage in a discourse regarding the progressive recovery of explanation effectiveness with escalating noise levels.
Graph neural networks (GNNs) have been demonstrated to be a powerful algorithmic model in broad application fields for their effectiveness in learning over graphs. To scale GNN training up for large-scale and ever-growing graphs, the most promising solution is distributed training which distributes the workload of training across multiple computing nodes. However, the workflows, computational patterns, communication patterns, and optimization techniques of distributed GNN training remain preliminarily understood. In this paper, we provide a comprehensive survey of distributed GNN training by investigating various optimization techniques used in distributed GNN training. First, distributed GNN training is classified into several categories according to their workflows. In addition, their computational patterns and communication patterns, as well as the optimization techniques proposed by recent work are introduced. Second, the software frameworks and hardware platforms of distributed GNN training are also introduced for a deeper understanding. Third, distributed GNN training is compared with distributed training of deep neural networks, emphasizing the uniqueness of distributed GNN training. Finally, interesting issues and opportunities in this field are discussed.
Neural networks have shown tremendous growth in recent years to solve numerous problems. Various types of neural networks have been introduced to deal with different types of problems. However, the main goal of any neural network is to transform the non-linearly separable input data into more linearly separable abstract features using a hierarchy of layers. These layers are combinations of linear and nonlinear functions. The most popular and common non-linearity layers are activation functions (AFs), such as Logistic Sigmoid, Tanh, ReLU, ELU, Swish and Mish. In this paper, a comprehensive overview and survey is presented for AFs in neural networks for deep learning. Different classes of AFs such as Logistic Sigmoid and Tanh based, ReLU based, ELU based, and Learning based are covered. Several characteristics of AFs such as output range, monotonicity, and smoothness are also pointed out. A performance comparison is also performed among 18 state-of-the-art AFs with different networks on different types of data. The insights of AFs are presented to benefit the researchers for doing further research and practitioners to select among different choices. The code used for experimental comparison is released at: \url{//github.com/shivram1987/ActivationFunctions}.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Deep neural networks have achieved remarkable success in computer vision tasks. Existing neural networks mainly operate in the spatial domain with fixed input sizes. For practical applications, images are usually large and have to be downsampled to the predetermined input size of neural networks. Even though the downsampling operations reduce computation and the required communication bandwidth, it removes both redundant and salient information obliviously, which results in accuracy degradation. Inspired by digital signal processing theories, we analyze the spectral bias from the frequency perspective and propose a learning-based frequency selection method to identify the trivial frequency components which can be removed without accuracy loss. The proposed method of learning in the frequency domain leverages identical structures of the well-known neural networks, such as ResNet-50, MobileNetV2, and Mask R-CNN, while accepting the frequency-domain information as the input. Experiment results show that learning in the frequency domain with static channel selection can achieve higher accuracy than the conventional spatial downsampling approach and meanwhile further reduce the input data size. Specifically for ImageNet classification with the same input size, the proposed method achieves 1.41% and 0.66% top-1 accuracy improvements on ResNet-50 and MobileNetV2, respectively. Even with half input size, the proposed method still improves the top-1 accuracy on ResNet-50 by 1%. In addition, we observe a 0.8% average precision improvement on Mask R-CNN for instance segmentation on the COCO dataset.
Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.