亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

P-hacking is prevalent in reality but absent from classical hypothesis testing theory. As a consequence, significant results are much more common than they are supposed to be when the null hypothesis is in fact true. In this paper, we build a model of hypothesis testing with p-hacking. From the model, we construct critical values such that, if the values are used to determine significance, and if scientists' p-hacking behavior adjusts to the new significance standards, significant results occur with the desired frequency. Such robust critical values allow for p-hacking so they are larger than classical critical values. To illustrate the amount of correction that p-hacking might require, we calibrate the model using evidence from the medical sciences. In the calibrated model the robust critical value for any test statistic is the classical critical value for the same test statistic with one fifth of the significance level.

相關內容

We propose a method for computing integrable orthogonal frame fields on planar surfaces. Frames and their symmetries are implicitly represented using orthogonally decomposable (odeco) tensors. To formulate an integrability criterion, we express the frame field's Lie bracket solely in terms of the tensor representation; this is made possible by studying the sensitivity of the frame with respect to perturbations in the tensor. We construct an energy formulation that computes smooth and integrable frame fields, in both isotropic and anisotropic settings. The user can prescribe any size and orientation constraints in input, and the solver creates and places the singularities required to fit the constraints with the correct topology. The computed frame field can be integrated to a seamless parametrization that is aligned with the frame field.

We consider channel coding for discrete memoryless channels (DMCs) with a novel cost constraint that constrains both the mean and the variance of the cost of the codewords. We show that the maximum (asymptotically) achievable rate under the new cost formulation is equal to the capacity-cost function; in particular, the strong converse holds. We further characterize the optimal second-order coding rate of these cost-constrained codes; in particular, the optimal second-order coding rate is finite. We then show that the second-order coding performance is strictly improved with feedback using a new variation of timid/bold coding, significantly broadening the applicability of timid/bold coding schemes from unconstrained compound-dispersion channels to all cost-constrained channels. Equivalent results on the minimum average probability of error are also given.

Reading comprehension, a fundamental cognitive ability essential for knowledge acquisition, is a complex skill, with a notable number of learners lacking proficiency in this domain. This study introduces innovative tasks for Brain-Computer Interface (BCI), predicting the relevance of words or tokens read by individuals to the target inference words. We use state-of-the-art Large Language Models (LLMs) to guide a new reading embedding representation in training. This representation, integrating EEG and eye-tracking biomarkers through an attention-based transformer encoder, achieved a mean 5-fold cross-validation accuracy of 68.7% across nine subjects using a balanced sample, with the highest single-subject accuracy reaching 71.2%. This study pioneers the integration of LLMs, EEG, and eye-tracking for predicting human reading comprehension at the word level. We fine-tune the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model for word embedding, devoid of information about the reading tasks. Despite this absence of task-specific details, the model effortlessly attains an accuracy of 92.7%, thereby validating our findings from LLMs. This work represents a preliminary step toward developing tools to assist reading.

We consider the problem of computing a maximal matching with a distributed algorithm in the presence of batch-dynamic changes to the graph topology. We assume that a graph of $n$ nodes is vertex-partitioned among $k$ players that communicate via message passing. Our goal is to provide an efficient algorithm that quickly updates the matching even if an adversary determines batches of $\ell$ edge insertions or deletions. Assuming a link bandwidth of $O(\beta\log n)$ bits per round, for a parameter $\beta \ge 1$, we first show a lower bound of $\Omega( \frac{\ell\,\log k}{\beta\,k^2\log n})$ rounds for recomputing a matching assuming an oblivious adversary who is unaware of the initial (random) vertex partition as well as the current state of the players, and a stronger lower bound of $\Omega(\frac{\ell}{\beta\,k\log n})$ rounds against an adaptive adversary, who may choose any balanced (but not necessarily random) vertex partition initially and who knows the current state of the players. We also present a randomized algorithm that has an initialization time of $O( \lceil\frac{n}{\beta\,k}\rceil\log n )$ rounds, while achieving an update time that that is independent of $n$: In more detail, the update time is $O( \lceil \frac{\ell}{\beta\,k} \rceil \log(\beta\,k))$ against an oblivious adversary, who must fix all updates in advance. If we consider the stronger adaptive adversary, the update time becomes $O( \lceil \frac{\ell}{\sqrt{\beta\,k}}\rceil \log(\beta\,k))$ rounds.

Causal effect estimation from observational data is a fundamental task in empirical sciences. It becomes particularly challenging when unobserved confounders are involved in a system. This paper focuses on front-door adjustment -- a classic technique which, using observed mediators allows to identify causal effects even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. In 2022, Jeong, Tian, and Bareinboim presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given directed acyclic graph (DAG), with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the causal graph. In our work, we give the first linear-time, i.e., $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity. This result implies an $O(n(n+m))$ delay enumeration algorithm of all front-door adjustment sets, again improving previous work by a factor of $n^3$. Moreover, we provide the first linear-time algorithm for finding a minimal front-door adjustment set. We offer implementations of our algorithms in multiple programming languages to facilitate practical usage and empirically validate their feasibility, even for large graphs.

Although continuous advances in theoretical modelling of Molecular Communications (MC) are observed, there is still an insuperable gap between theory and experimental testbeds, especially at the microscale. In this paper, the development of the first testbed incorporating engineered yeast cells is reported. Different from the existing literature, eukaryotic yeast cells are considered for both the sender and the receiver, with {\alpha}-factor molecules facilitating the information transfer. The use of such cells is motivated mainly by the well understood biological mechanism of yeast mating, together with their genetic amenability. In addition, recent advances in yeast biosensing establish yeast as a suitable detector and a neat interface to in-body sensor networks. The system under consideration is presented first, and the mathematical models of the underlying biological processes leading to an end-to-end (E2E) system are given. The experimental setup is then described and used to obtain experimental results which validate the developed mathematical models. Beyond that, the ability of the system to effectively generate output pulses in response to repeated stimuli is demonstrated, reporting one event per two hours. However, fast RNA fluctuations indicate cell responses in less than three minutes, demonstrating the potential for much higher rates in the future.

People employ expressive behaviors to effectively communicate and coordinate their actions with others, such as nodding to acknowledge a person glancing at them or saying "excuse me" to pass people in a busy corridor. We would like robots to also demonstrate expressive behaviors in human-robot interaction. Prior work proposes rule-based methods that struggle to scale to new communication modalities or social situations, while data-driven methods require specialized datasets for each social situation the robot is used in. We propose to leverage the rich social context available from large language models (LLMs) and their ability to generate motion based on instructions or user preferences, to generate expressive robot motion that is adaptable and composable, building upon each other. Our approach utilizes few-shot chain-of-thought prompting to translate human language instructions into parametrized control code using the robot's available and learned skills. Through user studies and simulation experiments, we demonstrate that our approach produces behaviors that users found to be competent and easy to understand. Supplementary material can be found at //generative-expressive-motion.github.io/.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.

北京阿比特科技有限公司