亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce learning augmented algorithms to the online graph coloring problem. Although the simple greedy algorithm FirstFit is known to perform poorly in the worst case, we are able to establish a relationship between the structure of any input graph $G$ that is revealed online and the number of colors that FirstFit uses for $G$. Based on this relationship, we propose an online coloring algorithm FirstFitPredictions that extends FirstFit while making use of machine learned predictions. We show that FirstFitPredictions is both \emph{consistent} and \emph{smooth}. Moreover, we develop a novel framework for combining online algorithms at runtime specifically for the online graph coloring problem. Finally, we show how this framework can be used to robustify by combining it with any classical online coloring algorithm (that disregards the predictions).

相關內容

A bottleneck in modern active automata learning is to test whether a hypothesized Mealy machine correctly describes the system under learning. The search space for possible counterexamples is given by so-called test suites, consisting of input sequences that have to be checked to decide whether a counterexample exists. This paper shows that significantly smaller test suites suffice under reasonable assumptions on the structure of the black box. These smaller test suites help to refute false hypotheses during active automata learning, even when the assumptions do not hold. We combine multiple test suites using a multi-armed bandit setup that adaptively selects a test suite. An extensive empirical evaluation shows the efficacy of our approach. For small to medium-sized models, the performance gain is limited. However, the approach allows learning models from large, industrial case studies that were beyond the reach of known methods.

In the context of interactive proofs, a "folding scheme" (popularized by Nova) is a way to combine multiple instances of a constraint system into a single instance, so the validity of the multiple instances can statistically be reduced to the validity of a single one. We show how Nova folding can be generalized to ``custom'' gates and extra rounds of verifier randomness. As an application of this extension, we present Origami, the first (to our knowledge) known example of a folding scheme for lookups.

Quantum circuit simulation is a challenging computational problem crucial for quantum computing research and development. The predominant approaches in this area center on tensor networks, prized for their better concurrency and less computation than methods using full quantum vectors and matrices. However, even with the advantages, array-based tensors can have significant redundancy. We present a novel open-source framework that harnesses tensor decision diagrams to eliminate overheads and achieve significant speedups over prior approaches. On average, it delivers a speedup of 37$\times$ over Google's TensorNetwork library on redundancy-rich circuits, and 25$\times$ and 144$\times$ over quantum multi-valued decision diagram and prior tensor decision diagram implementation, respectively, on Google random quantum circuits. To achieve this, we introduce a new linear-complexity rank simplification algorithm, Tetris, and edge-centric data structures for recursive tensor decision diagram operations. Additionally, we explore the efficacy of tensor network contraction ordering and optimizations from binary decision diagrams.

We investigate two possible techniques to authenticate the q-digest data structure, along with a worst-case study of the computational complexity both in time and space of the proposed solutions, and considerations on the feasibility of the presented approaches in real-world scenarios. We conclude the discussion by presenting some considerations on the information complexity of the queries in the two proposed approaches, and by presenting some interesting ideas that could be the subject of future studies on the topic.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Graph Neural Networks (GNNs) have proven to be useful for many different practical applications. However, many existing GNN models have implicitly assumed homophily among the nodes connected in the graph, and therefore have largely overlooked the important setting of heterophily, where most connected nodes are from different classes. In this work, we propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily. The proposed framework incorporates an interpretable compatibility matrix for modeling the heterophily or homophily level in the graph, which can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily. Theoretically, we show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN. Our extensive experiments demonstrate the effectiveness of our approach in more realistic and challenging experimental settings with significantly less training data compared to previous works: CPGNN variants achieve state-of-the-art results in heterophily settings with or without contextual node features, while maintaining comparable performance in homophily settings.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

We study the problem of textual relation embedding with distant supervision. To combat the wrong labeling problem of distant supervision, we propose to embed textual relations with global statistics of relations, i.e., the co-occurrence statistics of textual and knowledge base relations collected from the entire corpus. This approach turns out to be more robust to the training noise introduced by distant supervision. On a popular relation extraction dataset, we show that the learned textual relation embedding can be used to augment existing relation extraction models and significantly improve their performance. Most remarkably, for the top 1,000 relational facts discovered by the best existing model, the precision can be improved from 83.9% to 89.3%.

北京阿比特科技有限公司