亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Link Traversal-based Query Processing (ltqp), in which a sparql query is evaluated over a web of documents rather than a single dataset, is often seen as a theoretically interesting yet impractical technique. However, in a time where the hypercentralization of data has increasingly come under scrutiny, a decentralized Web of Data with a simple document-based interface is appealing, as it enables data publishers to control their data and access rights. While ltqp allows evaluating complex queries over such webs, it suffers from performance issues (due to the high number of documents containing data) as well as information quality concerns (due to the many sources providing such documents). In existing ltqp approaches, the burden of finding sources to query is entirely in the hands of the data consumer. In this paper, we argue that to solve these issues, data publishers should also be able to suggest sources of interest and guide the data consumer towards relevant and trustworthy data. We introduce a theoretical framework that enables such guided link traversal and study its properties. We illustrate with a theoretic example that this can improve query results and reduce the number of network requests. We evaluate our proposal experimentally on a virtual linked web with specifications and indeed observe that not just the data quality but also the efficiency of querying improves. Under consideration in Theory and Practice of Logic Programming (TPLP).

相關內容

《邏輯程序設計理論與實踐》是一本國際性的期刊,它發表的論著涵蓋了邏輯程序設計的理論與實踐。邏輯適用于人工智能和計算機科學的所有領域。邏輯編程是這些領域的基礎。其中包括使用邏輯編程的人工智能應用程序、邏輯編程方法、系統規范、分析和驗證、歸納邏輯編程、多關系數據挖掘、自然語言處理、知識表示、非單調推理、語義web推理、數據庫,實現和架構以及約束邏輯編程。 官網鏈接: · 聯邦學習 · Integration · Machine Learning · Unstructured ·
2023 年 5 月 15 日

Federated Learning is a distributed machine learning approach that enables geographically distributed data silos to collaboratively learn a joint machine learning model without sharing data. Most of the existing work operates on unstructured data, such as images or text, or on structured data assumed to be consistent across the different sites. However, sites often have different schemata, data formats, data values, and access patterns. The field of data integration has developed many methods to address these challenges, including techniques for data exchange and query rewriting using declarative schema mappings, and for entity linkage. Therefore, we propose an architectural vision for an end-to-end Federated Learning and Integration system, incorporating the critical steps of data harmonization and data imputation, to spur further research on the intersection of data management information systems and machine learning.

Using reinforcement learning for automated theorem proving has recently received much attention. Current approaches use representations of logical statements that often rely on the names used in these statements and, as a result, the models are generally not transferable from one domain to another. The size of these representations and whether to include the whole theory or part of it are other important decisions that affect the performance of these approaches as well as their runtime efficiency. In this paper, we present NIAGRA; an ensemble Name InvAriant Graph RepresentAtion. NIAGRA addresses this problem by using 1) improved Graph Neural Networks for learning name-invariant formula representations that is tailored for their unique characteristics and 2) an efficient ensemble approach for automated theorem proving. Our experimental evaluation shows state-of-the-art performance on multiple datasets from different domains with improvements up to 10% compared to the best learning-based approaches. Furthermore, transfer learning experiments show that our approach significantly outperforms other learning-based approaches by up to 28%.

This paper studies a class of multi-agent reinforcement learning (MARL) problems where the reward that an agent receives depends on the states of other agents, but the next state only depends on the agent's own current state and action. We name it REC-MARL standing for REward-Coupled Multi-Agent Reinforcement Learning. REC-MARL has a range of important applications such as real-time access control and distributed power control in wireless networks. This paper presents a distributed policy gradient algorithm for REC-MARL. The proposed algorithm is distributed in two aspects: (i) the learned policy is a distributed policy that maps a local state of an agent to its local action and (ii) the learning/training is distributed, during which each agent updates its policy based on its own and neighbors' information. The learned algorithm achieves a stationary policy and its iterative complexity bounds depend on the dimension of local states and actions. The experimental results of our algorithm for the real-time access control and power control in wireless networks show that our policy significantly outperforms the state-of-the-art algorithms and well-known benchmarks.

Distributed tensor decomposition (DTD) is a fundamental data-analytics technique that extracts latent important properties from high-dimensional multi-attribute datasets distributed over edge devices. Conventionally its wireless implementation follows a one-shot approach that first computes local results at devices using local data and then aggregates them to a server with communication-efficient techniques such as over-the-air computation (AirComp) for global computation. Such implementation is confronted with the issues of limited storage-and-computation capacities and link interruption, which motivates us to propose a framework of on-the-fly communication-and-computing (FlyCom$^2$) in this work. The proposed framework enables streaming computation with low complexity by leveraging a random sketching technique and achieves progressive global aggregation through the integration of progressive uploading and multiple-input-multiple-output (MIMO) AirComp. To develop FlyCom$^2$, an on-the-fly sub-space estimator is designed to take real-time sketches accumulated at the server to generate online estimates for the decomposition. Its performance is evaluated by deriving both deterministic and probabilistic error bounds using the perturbation theory and concentration of measure. Both results reveal that the decomposition error is inversely proportional to the population of sketching observations received by the server. To further rein in the noise effect on the error, we propose a threshold-based scheme to select a subset of sufficiently reliable received sketches for DTD at the server. Experimental results validate the performance gain of the proposed selection algorithm and show that compared to its one-shot counterparts, the proposed FlyCom$^2$ achieves comparable (even better in the case of large eigen-gaps) decomposition accuracy besides dramatically reducing devices' complexity costs.

Knowledge graph embedding (KGE) is a increasingly popular technique that aims to represent entities and relations of knowledge graphs into low-dimensional semantic spaces for a wide spectrum of applications such as link prediction, knowledge reasoning and knowledge completion. In this paper, we provide a systematic review of existing KGE techniques based on representation spaces. Particularly, we build a fine-grained classification to categorise the models based on three mathematical perspectives of the representation spaces: (1) Algebraic perspective, (2) Geometric perspective, and (3) Analytical perspective. We introduce the rigorous definitions of fundamental mathematical spaces before diving into KGE models and their mathematical properties. We further discuss different KGE methods over the three categories, as well as summarise how spatial advantages work over different embedding needs. By collating the experimental results from downstream tasks, we also explore the advantages of mathematical space in different scenarios and the reasons behind them. We further state some promising research directions from a representation space perspective, with which we hope to inspire researchers to design their KGE models as well as their related applications with more consideration of their mathematical space properties.

Graph neural networks (GNNs) are a type of deep learning models that learning over graphs, and have been successfully applied in many domains. Despite the effectiveness of GNNs, it is still challenging for GNNs to efficiently scale to large graphs. As a remedy, distributed computing becomes a promising solution of training large-scale GNNs, since it is able to provide abundant computing resources. However, the dependency of graph structure increases the difficulty of achieving high-efficiency distributed GNN training, which suffers from the massive communication and workload imbalance. In recent years, many efforts have been made on distributed GNN training, and an array of training algorithms and systems have been proposed. Yet, there is a lack of systematic review on the optimization techniques from graph processing to distributed execution. In this survey, we analyze three major challenges in distributed GNN training that are massive feature communication, the loss of model accuracy and workload imbalance. Then we introduce a new taxonomy for the optimization techniques in distributed GNN training that address the above challenges. The new taxonomy classifies existing techniques into four categories that are GNN data partition, GNN batch generation, GNN execution model, and GNN communication protocol.We carefully discuss the techniques in each category. In the end, we summarize existing distributed GNN systems for multi-GPUs, GPU-clusters and CPU-clusters, respectively, and give a discussion about the future direction on scalable GNNs.

Blockchain is an emerging decentralized data collection, sharing and storage technology, which have provided abundant transparent, secure, tamper-proof, secure and robust ledger services for various real-world use cases. Recent years have witnessed notable developments of blockchain technology itself as well as blockchain-adopting applications. Most existing surveys limit the scopes on several particular issues of blockchain or applications, which are hard to depict the general picture of current giant blockchain ecosystem. In this paper, we investigate recent advances of both blockchain technology and its most active research topics in real-world applications. We first review the recent developments of consensus mechanisms and storage mechanisms in general blockchain systems. Then extensive literature is conducted on blockchain enabled IoT, edge computing, federated learning and several emerging applications including healthcare, COVID-19 pandemic, social network and supply chain, where detailed specific research topics are discussed in each. Finally, we discuss the future directions, challenges and opportunities in both academia and industry.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

Federated learning is a new distributed machine learning framework, where a bunch of heterogeneous clients collaboratively train a model without sharing training data. In this work, we consider a practical and ubiquitous issue in federated learning: intermittent client availability, where the set of eligible clients may change during the training process. Such an intermittent client availability model would significantly deteriorate the performance of the classical Federated Averaging algorithm (FedAvg for short). We propose a simple distributed non-convex optimization algorithm, called Federated Latest Averaging (FedLaAvg for short), which leverages the latest gradients of all clients, even when the clients are not available, to jointly update the global model in each iteration. Our theoretical analysis shows that FedLaAvg attains the convergence rate of $O(1/(N^{1/4} T^{1/2}))$, achieving a sublinear speedup with respect to the total number of clients. We implement and evaluate FedLaAvg with the CIFAR-10 dataset. The evaluation results demonstrate that FedLaAvg indeed reaches a sublinear speedup and achieves 4.23% higher test accuracy than FedAvg.

Video anomaly detection under weak labels is formulated as a typical multiple-instance learning problem in previous works. In this paper, we provide a new perspective, i.e., a supervised learning task under noisy labels. In such a viewpoint, as long as cleaning away label noise, we can directly apply fully supervised action classifiers to weakly supervised anomaly detection, and take maximum advantage of these well-developed classifiers. For this purpose, we devise a graph convolutional network to correct noisy labels. Based upon feature similarity and temporal consistency, our network propagates supervisory signals from high-confidence snippets to low-confidence ones. In this manner, the network is capable of providing cleaned supervision for action classifiers. During the test phase, we only need to obtain snippet-wise predictions from the action classifier without any extra post-processing. Extensive experiments on 3 datasets at different scales with 2 types of action classifiers demonstrate the efficacy of our method. Remarkably, we obtain the frame-level AUC score of 82.12% on UCF-Crime.

北京阿比特科技有限公司