亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We specialize techniques from topological data analysis to the problem of characterizing the topological complexity (as defined in the body of the paper) of a multi-class data set. As a by-product, a topological classifier is defined that uses an open sub-covering of the data set. This sub-covering can be used to construct a simplicial complex whose topological features (e.g., Betti numbers) provide information about the classification problem. We use these topological constructs to study the impact of topological complexity on learning in feedforward deep neural networks (DNNs). We hypothesize that topological complexity is negatively correlated with the ability of a fully connected feedforward deep neural network to learn to classify data correctly. We evaluate our topological classification algorithm on multiple constructed and open source data sets. We also validate our hypothesis regarding the relationship between topological complexity and learning in DNN's on multiple data sets.

相關內容

We study differentially private (DP) algorithms for recovering clusters in well-clustered graphs, which are graphs whose vertex set can be partitioned into a small number of sets, each inducing a subgraph of high inner conductance and small outer conductance. Such graphs have widespread application as a benchmark in the theoretical analysis of spectral clustering. We provide an efficient ($\epsilon$,$\delta$)-DP algorithm tailored specifically for such graphs. Our algorithm draws inspiration from the recent work of Chen et al., who developed DP algorithms for recovery of stochastic block models in cases where the graph comprises exactly two nearly-balanced clusters. Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters, and the misclassification ratio almost matches the one of the best-known non-private algorithms. We conduct experimental evaluations on datasets with known ground truth clusters to substantiate the prowess of our algorithm. We also show that any (pure) $\epsilon$-DP algorithm would result in substantial error.

We present a mechanized embedding of higher-order logic (HOL) and algebraic data types (ADT) into first-order logic with ZFC axioms. We implement this in the Lisa proof assistant for schematic first-order logic and its library based on axiomatic set theory. HOL proof steps are implemented as proof producing tactics in Lisa, and the types are interpreted as sets, with function (or arrow) types coinciding with set-theoretic function spaces. The embedded HOL proofs, as opposed to being a layer over the existing proofs, are interoperable with the existing library. This yields a form of soft type system supporting top-level polymorphism and ADTs over set theory, and offer tools to reason about functions in set theory.

Despite the promising progress in multi-modal tasks, current large multi-modal models (LMMs) are prone to hallucinating inconsistent descriptions with respect to the associated image and human instructions. This paper addresses this issue by introducing the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction. Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers. Unlike existing studies that primarily focus on positive instruction samples, we design LRV-Instruction to include both positive and negative instructions for more robust visual instruction tuning. Our negative instructions are designed at three semantic levels: (i) Nonexistent Object Manipulation, (ii) Existent Object Manipulation and (iii) Knowledge Manipulation. To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts. GAVIE does not require human-annotated groundtruth answers and can adapt to diverse instruction formats. We conduct comprehensive experiments to investigate the hallucination of LMMs. Our results demonstrate existing LMMs exhibit significant hallucinations when presented with our negative instructions, particularly Existent Object and Knowledge Manipulation instructions. Moreover, we successfully mitigate hallucination by finetuning MiniGPT4 and mPLUG-Owl on LRV-Instruction while improving performance on several public datasets compared to state-of-the-art methods. Additionally, we observed that a balanced ratio of positive and negative instances in the training data leads to a more robust model. Code and data are available at //github.com/FuxiaoLiu/LRV-Instruction.

When analysing Differentially Private (DP) machine learning pipelines, the potential privacy cost of data-dependent pre-processing is frequently overlooked in privacy accounting. In this work, we propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms. Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions: a variant of DP termed Smooth DP and the bounded sensitivity of the pre-processing algorithms. In addition to the generic framework, we provide explicit overall privacy guarantees for multiple data-dependent pre-processing algorithms, such as data imputation, quantization, deduplication and PCA, when used in combination with several DP algorithms. Notably, this framework is also simple to implement, allowing direct integration into existing DP pipelines.

With the increasing amount of data available to scientists in disciplines as diverse as bioinformatics, physics, and remote sensing, scientific workflow systems are becoming increasingly important for composing and executing scalable data analysis pipelines. When writing such workflows, users need to specify the resources to be reserved for tasks so that sufficient resources are allocated on the target cluster infrastructure. Crucially, underestimating a task's memory requirements can result in task failures. Therefore, users often resort to overprovisioning, resulting in significant resource wastage and decreased throughput. In this paper, we propose a novel online method that uses monitoring time series data to predict task memory usage in order to reduce the memory wastage of scientific workflow tasks. Our method predicts a task's runtime, divides it into k equally-sized segments, and learns the peak memory value for each segment depending on the total file input size. We evaluate the prototype implementation of our method using workflows from the publicly available nf-core repository, showing an average memory wastage reduction of 29.48% compared to the best state-of-the-art approach.

The task of predicting multiple links within knowledge graphs (KGs) stands as a challenge in the field of knowledge graph analysis, a challenge increasingly resolvable due to advancements in natural language processing (NLP) and KG embedding techniques. This paper introduces a novel methodology, the Knowledge Graph Large Language Model Framework (KG-LLM), which leverages pivotal NLP paradigms, including chain-of-thought (CoT) prompting and in-context learning (ICL), to enhance multi-hop link prediction in KGs. By converting the KG to a CoT prompt, our framework is designed to discern and learn the latent representations of entities and their interrelations. To show the efficacy of the KG-LLM Framework, we fine-tune three leading Large Language Models (LLMs) within this framework, employing both non-ICL and ICL tasks for a comprehensive evaluation. Further, we explore the framework's potential to provide LLMs with zero-shot capabilities for handling previously unseen prompts. Our experimental findings discover that integrating ICL and CoT not only augments the performance of our approach but also significantly boosts the models' generalization capacity, thereby ensuring more precise predictions in unfamiliar scenarios.

Decentralized Gradient Descent (DGD) is a popular algorithm used to solve decentralized optimization problems in diverse domains such as remote sensing, distributed inference, multi-agent coordination, and federated learning. Yet, executing DGD over wireless systems affected by noise, fading and limited bandwidth presents challenges, requiring scheduling of transmissions to mitigate interference and the acquisition of topology and channel state information -- complex tasks in wireless decentralized systems. This paper proposes a DGD algorithm tailored to wireless systems. Unlike existing approaches, it operates without inter-agent coordination, topology information, or channel state information. Its core is a Non-Coherent Over-The-Air (NCOTA) consensus scheme, exploiting a noisy energy superposition property of wireless channels. With a randomized transmission strategy to accommodate half-duplex operation, transmitters map local optimization signals to energy levels across subcarriers in an OFDM frame, and transmit concurrently without coordination. It is shown that received energies form a noisy consensus signal, whose fluctuations are mitigated via a consensus stepsize. NCOTA-DGD leverages the channel pathloss for consensus formation, without explicit knowledge of the mixing weights. It is shown that, for the class of strongly-convex problems, the expected squared distance between the local and globally optimum models vanishes with rate $\mathcal O(1/\sqrt{k})$ after $k$ iterations, with a proper design of decreasing stepsizes. Extensions address a broad class of fading models and frequency-selective channels. Numerical results on an image classification task depict faster convergence vis-\`a-vis running time than state-of-the-art schemes, especially in densely deployed networks.

Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing

Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司