亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The engineering community currently encounters significant challenges in the development of intelligent transportation algorithms that can be transferred from simulation to reality with minimal effort. This can be achieved by robustifying the algorithms using domain adaptation methods and/or by adopting cutting-edge tools that help support this objective seamlessly. This work presents AutoDRIVE, an openly accessible digital twin ecosystem designed to facilitate synergistic development, simulation and deployment of cyber-physical solutions pertaining to autonomous driving technology; and focuses on bridging the autonomy-oriented simulation-to-reality (sim2real) gap using the proposed ecosystem. In this paper, we extensively explore the modeling and simulation aspects of the ecosystem and substantiate its efficacy by demonstrating the successful transition of two candidate autonomy algorithms from simulation to reality to help support our claims: (i) autonomous parking using probabilistic robotics approach; (ii) behavioral cloning using deep imitation learning. The outcomes of these case studies further strengthen the credibility of AutoDRIVE as an invaluable tool for advancing the state-of-the-art in autonomous driving technology.

相關內容

The entity alignment of science and technology patents aims to link the equivalent entities in the knowledge graph of different science and technology patent data sources. Most entity alignment methods only use graph neural network to obtain the embedding of graph structure or use attribute text description to obtain semantic representation, ignoring the process of multi-information fusion in science and technology patents. In order to make use of the graphic structure and auxiliary information such as the name, description and attribute of the patent entity, this paper proposes an entity alignment method based on the graph convolution network for science and technology patent information fusion. Through the graph convolution network and BERT model, the structure information and entity attribute information of the science and technology patent knowledge graph are embedded and represented to achieve multi-information fusion, thus improving the performance of entity alignment. Experiments on three benchmark data sets show that the proposed method Hit@K The evaluation indicators are better than the existing methods.

The shuffle model of differential privacy has gained significant interest as an intermediate trust model between the standard local and central models [EFMRTT19; CSUZZ19]. A key result in this model is that randomly shuffling locally randomized data amplifies differential privacy guarantees. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously [BEMMRLRKTS17]. In this work, we improve the state of the art privacy amplification by shuffling results both theoretically and numerically. Our first contribution is the first asymptotically optimal analysis of the R\'enyi differential privacy parameters for the shuffled outputs of LDP randomizers. Our second contribution is a new analysis of privacy amplification by shuffling. This analysis improves on the techniques of [FMT20] and leads to tighter numerical bounds in all parameter settings.

The theory underlying robust distributed learning algorithms, designed to resist adversarial machines, matches empirical observations when data is homogeneous. Under data heterogeneity however, which is the norm in practical scenarios, established lower bounds on the learning error are essentially vacuous and greatly mismatch empirical observations. This is because the heterogeneity model considered is too restrictive and does not cover basic learning tasks such as least-squares regression. We consider in this paper a more realistic heterogeneity model, namely (G,B)-gradient dissimilarity, and show that it covers a larger class of learning problems than existing theory. Notably, we show that the breakdown point under heterogeneity is lower than the classical fraction 1/2. We also prove a new lower bound on the learning error of any distributed learning algorithm. We derive a matching upper bound for a robust variant of distributed gradient descent, and empirically show that our analysis reduces the gap between theory and practice.

Decision analysis deals with modeling and enhancing decision processes. A principal challenge in improving behavior is in obtaining a transparent description of existing behavior in the first place. In this paper, we develop an expressive, unifying perspective on inverse decision modeling: a framework for learning parameterized representations of sequential decision behavior. First, we formalize the forward problem (as a normative standard), subsuming common classes of control behavior. Second, we use this to formalize the inverse problem (as a descriptive model), generalizing existing work on imitation/reward learning -- while opening up a much broader class of research problems in behavior representation. Finally, we instantiate this approach with an example (inverse bounded rational control), illustrating how this structure enables learning (interpretable) representations of (bounded) rationality -- while naturally capturing intuitive notions of suboptimal actions, biased beliefs, and imperfect knowledge of environments.

Despite the advancements in high-performance computing and modern numerical algorithms, the cost remains prohibitive for multi-query kinetic plasma simulations. In this work, we develop data-driven reduced-order models (ROM) for collisionless electrostatic plasma dynamics, based on the kinetic Vlasov-Poisson equation. Our ROM approach projects the equation onto a linear subspace defined by principal proper orthogonal decomposition (POD) modes. We introduce an efficient tensorial method to update the nonlinear term using a precomputed third-order tensor. We capture multiscale behavior with a minimal number of POD modes by decomposing the solution into multiple time windows using a physical-time indicator and creating a temporally-local ROM. Applied to 1D-1V simulations, specifically the benchmark two-stream instability case, our time-windowed reduced-order model (TW-ROM) with the tensorial approach solves the equation approximately 450 times faster than Eulerian simulations while maintaining a maximum relative error of 3% for the training data and 12% for the testing data.

Convergence and compactness properties of approximate solutions to elliptic partial differential computed with the hybridized discontinuous Galerkin (HDG) are established. While it is known that solutions computed using the HDG scheme converge at optimal rates to smooth solutions, this does not establish the stability of the method or convergence to solutions with minimal regularity. The compactness and convergence results show that the HDG scheme can be utilized for the solution of nonlinear problems and linear problems with non-smooth coefficients on domains with reentrant corners.

In computational neuroscience, there has been an increased interest in developing machine learning algorithms that leverage brain imaging data to provide estimates of "brain age" for an individual. Importantly, the discordance between brain age and chronological age (referred to as "brain age gap") can capture accelerated aging due to adverse health conditions and therefore, can reflect increased vulnerability towards neurological disease or cognitive impairments. However, widespread adoption of brain age for clinical decision support has been hindered due to lack of transparency and methodological justifications in most existing brain age prediction algorithms. In this paper, we leverage coVariance neural networks (VNN) to propose an explanation-driven and anatomically interpretable framework for brain age prediction using cortical thickness features. Specifically, our brain age prediction framework extends beyond the coarse metric of brain age gap in Alzheimer's disease (AD) and we make two important observations: (i) VNNs can assign anatomical interpretability to elevated brain age gap in AD by identifying contributing brain regions, (ii) the interpretability offered by VNNs is contingent on their ability to exploit specific eigenvectors of the anatomical covariance matrix. Together, these observations facilitate an explainable and anatomically interpretable perspective to the task of brain age prediction.

The feature interaction problem occurs when two or more independently developed components interact with each other in unanticipated ways, resulting in undesirable system behaviors. Feature interaction problems remain a challenge for emerging domains in cyber-physical systems (CPS), such as the Internet of Things and autonomous drones. Existing techniques for resolving feature interactions take a "winner-takes-all" approach, where one out of the conflicting features is selected as the most desirable one, and the rest are disabled. However, when multiple of the conflicting features fulfill important system requirements, being forced to select one of them can result in an undesirable system outcome. In this paper, we propose a new resolution approach that allows all of the conflicting features to continue to partially fulfill their requirements during the resolution process. In particular, our approach leverages the idea of adaptive requirement weakening, which involves one or more features temporarily weakening their level of performance in order to co-exist with the other features in a consistent manner. Given feature requirements specified in Signal Temporal Logic (STL), we propose an automated method and a runtime architecture for automatically weakening the requirements to resolve a conflict. We demonstrate our approach through case studies on feature interactions in autonomous drones.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

北京阿比特科技有限公司