For an odd prime $p$, we say $f(X) \in {\mathbb F}_p[X]$ computes square roots in $\mathbb F_p$ if, for all nonzero perfect squares $a \in \mathbb F_p$, we have $f(a)^2 = a$. When $p \equiv 3 \mod 4$, it is well known that $f(X) = X^{(p+1)/4}$ computes square roots. This degree is surprisingly low (and in fact lowest possible), since we have specified $(p-1)/2$ evaluations (up to sign) of the polynomial $f(X)$. On the other hand, for $p \equiv 1 \mod 4$ there was previously no nontrivial bound known on the lowest degree of a polynomial computing square roots in $\mathbb F_p$; it could have been anywhere between $\frac{p}{4}$ and $\frac{p}{2}$. We show that for all $p \equiv 1 \mod 4$, the degree of a polynomial computing square roots has degree at least $p/3$. Our main new ingredient is a general lemma which may be of independent interest: powers of a low degree polynomial cannot have too many consecutive zero coefficients. The proof method also yields a robust version: any polynomial that computes square roots for 99\% of the squares also has degree almost $p/3$. In the other direction, a result of Agou, Deligl\'ese, and Nicolas (Designs, Codes, and Cryptography, 2003) shows that for infinitely many $p \equiv 1 \mod 4$, the degree of a polynomial computing square roots can be as small as $3p/8$.
We show how to find all $k$ marked elements in a list of size $N$ using the optimal number $O(\sqrt{N k})$ of quantum queries and only a polylogarithmic overhead in the gate complexity, in the setting where one has a small quantum memory. Previous algorithms either incurred a factor $k$ overhead in the gate complexity, or had an extra factor $\log(k)$ in the query complexity. We then consider the problem of finding a multiplicative $\delta$-approximation of $s = \sum_{i=1}^N v_i$ where $v=(v_i) \in [0,1]^N$, given quantum query access to a binary description of $v$. We give an algorithm that does so, with probability at least $1-\rho$, using $O(\sqrt{N \log(1/\rho) / \delta})$ quantum queries (under mild assumptions on $\rho$). This quadratically improves the dependence on $1/\delta$ and $\log(1/\rho)$ compared to a straightforward application of amplitude estimation. To obtain the improved $\log(1/\rho)$ dependence we use the first result.
We consider approximating solutions to parameterized linear systems of the form $A(\mu_1,\mu_2) x(\mu_1,\mu_2) = b$, where $(\mu_1, \mu_2) \in \mathbb{R}^2$. Here the matrix $A(\mu_1,\mu_2) \in \mathbb{R}^{n \times n}$ is nonsingular, large, and sparse and depends nonlinearly on the parameters $\mu_1$ and $\mu_2$. Specifically, the system arises from a discretization of a partial differential equation and $x(\mu_1,\mu_2) \in \mathbb{R}^n$, $b \in \mathbb{R}^n$. This work combines companion linearization with the Krylov subspace method preconditioned bi-conjugate gradient (BiCG) and a decomposition of a tensor matrix of precomputed solutions, called snapshots. As a result, a reduced order model of $x(\mu_1,\mu_2)$ is constructed, and this model can be evaluated in a cheap way for many values of the parameters. Tensor decompositions performed on a set of snapshots can fail to reach a certain level of accuracy, and it is not known a priori if a decomposition will be successful. Moreover, the selection of snapshots can affect both the quality of the produced model and the computation time required for its construction. This new method offers a way to generate a new set of solutions on the same parameter space at little additional cost. An interpolation of the model is used to produce approximations on the entire parameter space, and this method can be used to solve a parameter estimation problem. Numerical examples of a parameterized Helmholtz equation show the competitiveness of our approach. The simulations are reproducible, and the software is available online.
We consider the problem of zero-error function computation with side information. Alice has a source $X$ and Bob has correlated source $Y$ and they can communicate via either classical or a quantum channel. Bob wants to calculate $f(X,Y)$ with zero error. We aim to characterize the minimum amount of information that Alice needs to send to Bob for this to happen with zero-error. In the classical setting, this quantity depends on the asymptotic growth of $\chi(G^{(m)})$, the chromatic number of an appropriately defined $m$-instance "confusion graph". In this work we present structural characterizations of $G^{(m)}$ and demonstrate two function computation scenarios that have the same single-instance confusion graph. However, in one case there a strict advantage in using quantum transmission as against classical transmission, whereas there is no such advantage in the other case.
Let $D$ be a digraph. Its acyclic number $\vec{\alpha}(D)$ is the maximum order of an acyclic induced subdigraph and its dichromatic number $\vec{\chi}(D)$ is the least integer $k$ such that $V(D)$ can be partitioned into $k$ subsets inducing acyclic subdigraphs. We study ${\vec a}(n)$ and $\vec t(n)$ which are the minimum of $\vec\alpha(D)$ and the maximum of $\vec{\chi}(D)$, respectively, over all oriented triangle-free graphs of order $n$. For every $\epsilon>0$ and $n$ large enough, we show $(1/\sqrt{2} - \epsilon) \sqrt{n\log n} \leq \vec{a}(n) \leq \frac{107}{8} \sqrt n \log n$ and $\frac{8}{107} \sqrt n/\log n \leq \vec{t}(n) \leq (\sqrt 2 + \epsilon) \sqrt{n/\log n}$. We also construct an oriented triangle-free graph on 25 vertices with dichromatic number~3, and show that every oriented triangle-free graph of order at most 17 has dichromatic number at most 2.
Let $M$ be an $n\times n$ matrix of homogeneous linear forms over a field $\Bbbk$. If the ideal $\mathcal{I}_{n-2}(M)$ generated by minors of size $n-1$ is Cohen-Macaulay, then the Gulliksen-Neg{\aa}rd complex is a free resolution of $\mathcal{I}_{n-2}(M)$. It has recently been shown that by taking into account the syzygy modules for $\mathcal{I}_{n-2}(M)$ which can be obtained from this complex, one can derive a refined signature-based Gr\"obner basis algorithm DetGB which avoids reductions to zero when computing a grevlex Gr\"obner basis for $\mathcal{I}_{n-2}(M)$. In this paper, we establish sharp complexity bounds on DetGB. To accomplish this, we prove several results on the sizes of reduced grevlex Gr\"obner bases of reverse lexicographic ideals, thanks to which we obtain two main complexity results which rely on conjectures similar to that of Fr\"oberg. The first one states that, in the zero-dimensional case, the size of the reduced grevlex Gr\"obner basis of $\mathcal{I}_{n-2}(M)$ is bounded from below by $n^{6}$ asymptotically. The second, also in the zero-dimensional case, states that the complexity of DetGB is bounded from above by $n^{2\omega+3}$ asymptotically, where $2\le\omega\le 3$ is any complexity exponent for matrix multiplication over $\Bbbk$.
The trace-dev-div inequality in $H^s$ controls the trace in the norm of $H^s$ by that of the deviatoric part plus the $H^{s-1}$ norm of the divergence of a quadratic tensor field different from the constant unit matrix. This is well known for $s=0$ and established for orders $0\le s\le 1$ and arbitrary space dimension in this note. For mixed and least-squares finite element error analysis in linear elasticity, this inequality allows to establish robustness with respect to the Lam\'e parameter $\lambda$.
Given a graph $G$, two edges $e_{1},e_{2}\in E(G)$ are said to have a common edge $e$ if $e$ joins an endvertex of $e_{1}$ to an endvertex of $e_{2}$. A subset $B\subseteq E(G)$ is an edge open packing set in $G$ if no two edges of $B$ have a common edge in $G$, and the maximum cardinality of such a set in $G$ is called the edge open packing number, $\rho_{e}^{o}(G)$, of $G$. In this paper, we prove that the decision version of the edge open packing number is NP-complete even when restricted to graphs with universal vertices, Eulerian bipartite graphs, and planar graphs with maximum degree $4$, respectively. In contrast, we present a linear-time algorithm that computes the edge open packing number of a tree. We also resolve two problems posed in the seminal paper [Edge open packing sets in graphs, RAIRO-Oper.\ Res.\ 56 (2022) 3765--3776]. Notably, we characterize the graphs $G$ that attain the upper bound $\rho_e^o(G)\le |E(G)|/\delta(G)$, and provide lower and upper bounds for the edge-deleted subgraph of a graph and establish the corresponding realization result.
This paper deals with the equation $-\Delta u+\mu u=f$ on high-dimensional spaces $\mathbb{R}^m$, where the right-hand side $f(x)=F(Tx)$ is composed of a separable function $F$ with an integrable Fourier transform on a space of a dimension $n>m$ and a linear mapping given by a matrix $T$ of full rank and $\mu\geq 0$ is a constant. For example, the right-hand side can explicitly depend on differences $x_i-x_j$ of components of $x$. Following our publication [Numer. Math. (2020) 146:219--238], we show that the solution of this equation can be expanded into sums of functions of the same structure and develop in this framework an equally simple and fast iterative method for its computation. The method is based on the observation that in almost all cases and for large problem classes the expression $\|T^ty\|^2$ deviates on the unit sphere $\|y\|=1$ the less from its mean value the higher the dimension $m$ is, a concentration of measure effect. The higher the dimension $m$, the faster the iteration converges.
We study the problem of adaptive variable selection in a Gaussian white noise model of intensity $\varepsilon$ under certain sparsity and regularity conditions on an unknown regression function $f$. The $d$-variate regression function $f$ is assumed to be a sum of functions each depending on a smaller number $k$ of variables ($1 \leq k \leq d$). These functions are unknown to us and only few of them are nonzero. We assume that $d=d_\varepsilon \to \infty$ as $\varepsilon \to 0$ and consider the cases when $k$ is fixed and when $k=k_\varepsilon \to \infty$, $k=o(d)$ as $\varepsilon \to 0$. In this work, we introduce an adaptive selection procedure that, under some model assumptions, identifies exactly all nonzero $k$-variate components of $f$. In addition, we establish conditions under which exact identification of the nonzero components is impossible. These conditions ensure that the proposed selection procedure is the best possible in the asymptotically minimax sense with respect to the Hamming risk.
The logics $\mathsf{CS4}$ and $\mathsf{IS4}$ are the two leading intuitionistic variants of the modal logic $\mathsf{S4}$. Whether the finite model property holds for each of these logics have been long-standing open problems. It was recently shown that $\mathsf{IS4}$ has the finite frame property and thus the finite model property. In this paper, we prove that $\mathsf{CS4}$ also enjoys the finite frame property. Additionally, we investigate the following three logics closely related to $\mathsf{IS4}$. The logic $\mathsf{GS4}$ is obtained by adding the G\"odel--Dummett axiom to $\mathsf{IS4}$; it is both a superintuitionistic and a fuzzy logic and has previously been given a real-valued semantics. We provide an alternative birelational semantics and prove strong completeness with respect to this semantics. The extension $\mathsf{GS4^c}$ of $\mathsf{GS4}$ corresponds to requiring a crisp accessibility relation on the real-valued semantics. We give a birelational semantics corresponding to an extra confluence condition on the $\mathsf{GS4}$ birelational semantics and prove strong completeness. Neither of these two logics have the finite model property with respect to their real-valued semantics, but we prove that they have the finite frame property for their birelational semantics. Establishing the finite birelational frame property immediately establishes decidability, which was previously open for these two logics. Our proofs yield NEXPTIME upper bounds. The logic $\mathsf{S4I}$ is obtained from $\mathsf{IS4}$ by reversing the roles of the modal and intuitionistic relations in the birelational semantics. We also prove the finite frame property, and thereby decidability, for $\mathsf{S4I}$