We introduce and tackle the problem of zero-shot object detection (ZSD), which aims to detect object classes which are not observed during training. We work with a challenging set of object classes, not restricting ourselves to similar and/or fine-grained categories cf. prior works on zero-shot classification. We follow a principled approach by first adapting visual-semantic embeddings for ZSD. We then discuss the problems associated with selecting a background class and motivate two background-aware approaches for learning robust detectors. One of these models uses a fixed background class and the other is based on iterative latent assignments. We also outline the challenge associated with using a limited number of training classes and propose a solution based on dense sampling of the semantic label space using auxiliary data with a large number of categories. We propose novel splits of two standard detection datasets - MSCOCO and VisualGenome and discuss extensive empirical results to highlight the benefits of the proposed methods. We provide useful insights into the algorithm and conclude by posing some open questions to encourage further research.
Conventional methods for object detection typically require a substantial amount of training data and preparing such high-quality training data is very labor-intensive. In this paper, we propose a novel few-shot object detection network that aims at detecting objects of unseen categories with only a few annotated examples. Central to our method are our Attention-RPN, Multi-Relation Detector and Contrastive Training strategy, which exploit the similarity between the few shot support set and query set to detect novel objects while suppressing false detection in the background. To train our network, we contribute a new dataset that contains 1000 categories of various objects with high-quality annotations. To the best of our knowledge, this is one of the first datasets specifically designed for few-shot object detection. Once our few-shot network is trained, it can detect objects of unseen categories without further training or fine-tuning. Our method is general and has a wide range of potential applications. We produce a new state-of-the-art performance on different datasets in the few-shot setting. The dataset link is //github.com/fanq15/Few-Shot-Object-Detection-Dataset.
This work aims to solve the challenging few-shot object detection problem where only a few annotated examples are available for each object category to train a detection model. Such an ability of learning to detect an object from just a few examples is common for human vision systems, but remains absent for computer vision systems. Though few-shot meta learning offers a promising solution technique, previous works mostly target the task of image classification and are not directly applicable for the much more complicated object detection task. In this work, we propose a novel meta-learning based model with carefully designed architecture, which consists of a meta-model and a base detection model. The base detection model is trained on several base classes with sufficient samples to offer basis features. The meta-model is trained to reweight importance of features from the base detection model over the input image and adapt these features to assist novel object detection from a few examples. The meta-model is light-weight, end-to-end trainable and able to entail the base model with detection ability for novel objects fast. Through experiments we demonstrated our model can outperform baselines by a large margin for few-shot object detection, on multiple datasets and settings. Our model also exhibits fast adaptation speed to novel few-shot classes.
Zero-shot object detection is an emerging research topic that aims to recognize and localize previously 'unseen' objects. This setting gives rise to several unique challenges, e.g., highly imbalanced positive vs. negative instance ratio, ambiguity between background and unseen classes and the proper alignment between visual and semantic concepts. Here, we propose an end-to-end deep learning framework underpinned by a novel loss function that puts more emphasis on difficult examples to avoid class imbalance. We call our objective the 'Polarity loss' because it explicitly maximizes the gap between positive and negative predictions. Such a margin maximizing formulation is important as it improves the visual-semantic alignment while resolving the ambiguity between background and unseen. Our approach is inspired by the embodiment theories in cognitive science, that claim human semantic understanding to be grounded in past experiences (seen objects), related linguistic concepts (word dictionary) and the perception of the physical world (visual imagery). To this end, we learn to attend to a dictionary of related semantic concepts that eventually refines the noisy semantic embeddings and helps establish a better synergy between visual and semantic domains. Our extensive results on MS-COCO and Pascal VOC datasets show as high as 14 x mAP improvement over state of the art.
Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.
Latest deep learning methods for object detection provide remarkable performance, but have limits when used in robotic applications. One of the most relevant issues is the long training time, which is due to the large size and imbalance of the associated training sets, characterized by few positive and a large number of negative examples (i.e. background). Proposed approaches are based on end-to-end learning by back-propagation [22] or kernel methods trained with Hard Negatives Mining on top of deep features [8]. These solutions are effective, but prohibitively slow for on-line applications. In this paper we propose a novel pipeline for object detection that overcomes this problem and provides comparable performance, with a 60x training speedup. Our pipeline combines (i) the Region Proposal Network and the deep feature extractor from [22] to efficiently select candidate RoIs and encode them into powerful representations, with (ii) the FALKON [23] algorithm, a novel kernel-based method that allows fast training on large scale problems (millions of points). We address the size and imbalance of training data by exploiting the stochastic subsampling intrinsic into the method and a novel, fast, bootstrapping approach. We assess the effectiveness of the approach on a standard Computer Vision dataset (PASCAL VOC 2007 [5]) and demonstrate its applicability to a real robotic scenario with the iCubWorld Transformations [18] dataset.
Object detection is considered as one of the most challenging problems in computer vision, since it requires correct prediction of both classes and locations of objects in images. In this study, we define a more difficult scenario, namely zero-shot object detection (ZSD) where no visual training data is available for some of the target object classes. We present a novel approach to tackle this ZSD problem, where a convex combination of embeddings are used in conjunction with a detection framework. For evaluation of ZSD methods, we propose a simple dataset constructed from Fashion-MNIST images and also a custom zero-shot split for the Pascal VOC detection challenge. The experimental results suggest that our method yields promising results for ZSD.
As we move towards large-scale object detection, it is unrealistic to expect annotated training data for all object classes at sufficient scale, and so methods capable of unseen object detection are required. We propose a novel zero-shot method based on training an end-to-end model that fuses semantic attribute prediction with visual features to propose object bounding boxes for seen and unseen classes. While we utilize semantic features during training, our method is agnostic to semantic information for unseen classes at test-time. Our method retains the efficiency and effectiveness of YOLO for objects seen during training, while improving its performance for novel and unseen objects. The ability of state-of-art detection methods to learn discriminative object features to reject background proposals also limits their performance for unseen objects. We posit that, to detect unseen objects, we must incorporate semantic information into the visual domain so that the learned visual features reflect this information and leads to improved recall rates for unseen objects. We test our method on PASCAL VOC and MS COCO dataset and observed significant improvements on the average precision of unseen classes.
In this paper, we consider the problem of leveraging existing fully labeled categories to improve the weakly supervised detection (WSD) of new object categories, which we refer to as mixed supervised detection (MSD). Different from previous MSD methods that directly transfer the pre-trained object detectors from existing categories to new categories, we propose a more reasonable and robust objectness transfer approach for MSD. In our framework, we first learn domain-invariant objectness knowledge from the existing fully labeled categories. The knowledge is modeled based on invariant features that are robust to the distribution discrepancy between the existing categories and new categories; therefore the resulting knowledge would generalize well to new categories and could assist detection models to reject distractors (e.g., object parts) in weakly labeled images of new categories. Under the guidance of learned objectness knowledge, we utilize multiple instance learning (MIL) to model the concepts of both objects and distractors and to further improve the ability of rejecting distractors in weakly labeled images. Our robust objectness transfer approach outperforms the existing MSD methods, and achieves state-of-the-art results on the challenging ILSVRC2013 detection dataset and the PASCAL VOC datasets.
Recent advances in object detection are mainly driven by deep learning with large-scale detection benchmarks. However, the fully-annotated training set is often limited for a target detection task, which may deteriorate the performance of deep detectors. To address this challenge, we propose a novel low-shot transfer detector (LSTD) in this paper, where we leverage rich source-domain knowledge to construct an effective target-domain detector with very few training examples. The main contributions are described as follows. First, we design a flexible deep architecture of LSTD to alleviate transfer difficulties in low-shot detection. This architecture can integrate the advantages of both SSD and Faster RCNN in a unified deep framework. Second, we introduce a novel regularized transfer learning framework for low-shot detection, where the transfer knowledge (TK) and background depression (BD) regularizations are proposed to leverage object knowledge respectively from source and target domains, in order to further enhance fine-tuning with a few target images. Finally, we examine our LSTD on a number of challenging low-shot detection experiments, where LSTD outperforms other state-of-the-art approaches. The results demonstrate that LSTD is a preferable deep detector for low-shot scenarios.
In this paper, we study object detection using a large pool of unlabeled images and only a few labeled images per category, named "few-example object detection". The key challenge consists in generating trustworthy training samples as many as possible from the pool. Using few training examples as seeds, our method iterates between model training and high-confidence sample selection. In training, easy samples are generated first and, then the poorly initialized model undergoes improvement. As the model becomes more discriminative, challenging but reliable samples are selected. After that, another round of model improvement takes place. To further improve the precision and recall of the generated training samples, we embed multiple detection models in our framework, which has proven to outperform the single model baseline and the model ensemble method. Experiments on PASCAL VOC'07, MS COCO'14, and ILSVRC'13 indicate that by using as few as three or four samples selected for each category, our method produces very competitive results when compared to the state-of-the-art weakly-supervised approaches using a large number of image-level labels.