亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent empirical and theoretical studies have established the generalization capabilities of large machine learning models that are trained to (approximately or exactly) fit noisy data. In this work, we prove a surprising result that even if the ground truth itself is robust to adversarial examples, and the benignly overfitted model is benign in terms of the ``standard'' out-of-sample risk objective, this benign overfitting process can be harmful when out-of-sample data are subject to adversarial manipulation. More specifically, our main results contain two parts: (i) the min-norm estimator in overparameterized linear model always leads to adversarial vulnerability in the ``benign overfitting'' setting; (ii) we verify an asymptotic trade-off result between the standard risk and the ``adversarial'' risk of every ridge regression estimator, implying that under suitable conditions these two items cannot both be small at the same time by any single choice of the ridge regularization parameter. Furthermore, under the lazy training regime, we demonstrate parallel results on two-layer neural tangent kernel (NTK) model, which align with empirical observations in deep neural networks. Our finding provides theoretical insights into the puzzling phenomenon observed in practice, where the true target function (e.g., human) is robust against adverasrial attack, while beginly overfitted neural networks lead to models that are not robust.

相關內容

過擬合,在AI領域多指機器學習得到模型太過復雜,導致在訓練集上表現很好,然而在測試集上卻不盡人意。過擬合(over-fitting)也稱為過學習,它的直觀表現是算法在訓練集上表現好,但在測試集上表現不好,泛化性能差。過擬合是在模型參數擬合過程中由于訓練數據包含抽樣誤差,在訓練時復雜的模型將抽樣誤差也進行了擬合導致的。

An asymptotic theory is established for linear functionals of the predictive function given by kernel ridge regression, when the reproducing kernel Hilbert space is equivalent to a Sobolev space. The theory covers a wide variety of linear functionals, including point evaluations, evaluation of derivatives, $L_2$ inner products, etc. We establish the upper and lower bounds of the estimates and their asymptotic normality. It is shown that $\lambda\sim n^{-1}$ is the universal optimal order of magnitude for the smoothing parameter to balance the variance and the worst-case bias. The theory also implies that the optimal $L_\infty$ error of kernel ridge regression can be attained under the optimal smoothing parameter $\lambda\sim n^{-1}\log n$. These optimal rates for the smoothing parameter differ from the known optimal rate $\lambda\sim n^{-\frac{2m}{2m+d}}$ that minimizes the $L_2$ error of the kernel ridge regression.

Counterfactual explanations (CEs) enhance the interpretability of machine learning models by describing what changes to an input are necessary to change its prediction to a desired class. These explanations are commonly used to guide users' actions, e.g., by describing how a user whose loan application was denied can be approved for a loan in the future. Existing approaches generate CEs by focusing on a single, fixed model, and do not provide any formal guarantees on the CEs' future validity. When models are updated periodically to account for data shift, if the generated CEs are not robust to the shifts, users' actions may no longer have the desired impacts on their predictions. This paper introduces VeriTraCER, an approach that jointly trains a classifier and an explainer to explicitly consider the robustness of the generated CEs to small model shifts. VeriTraCER optimizes over a carefully designed loss function that ensures the verifiable robustness of CEs to local model updates, thus providing deterministic guarantees to CE validity. Our empirical evaluation demonstrates that VeriTraCER generates CEs that (1) are verifiably robust to small model updates and (2) display competitive robustness to state-of-the-art approaches in handling empirical model updates including random initialization, leave-one-out, and distribution shifts.

Graph neural networks (GNNs) have become increasingly popular in modeling graph-structured data due to their ability to learn node representations by aggregating local structure information. However, it is widely acknowledged that the test graph structure may differ from the training graph structure, resulting in a structure shift. In this paper, we experimentally find that the performance of GNNs drops significantly when the structure shift happens, suggesting that the learned models may be biased towards specific structure patterns. To address this challenge, we propose the Cluster Information Transfer (CIT) mechanism (Code available at //github.com/BUPT-GAMMA/CITGNN), which can learn invariant representations for GNNs, thereby improving their generalization ability to various and unknown test graphs with structure shift. The CIT mechanism achieves this by combining different cluster information with the nodes while preserving their cluster-independent information. By generating nodes across different clusters, the mechanism significantly enhances the diversity of the nodes and helps GNNs learn the invariant representations. We provide a theoretical analysis of the CIT mechanism, showing that the impact of changing clusters during structure shift can be mitigated after transfer. Additionally, the proposed mechanism is a plug-in that can be easily used to improve existing GNNs. We comprehensively evaluate our proposed method on three typical structure shift scenarios, demonstrating its effectiveness in enhancing GNNs' performance.

A growing literature in computational neuroscience leverages gradient descent and learning algorithms that approximate it to study synaptic plasticity in the brain. However, the vast majority of this work ignores a critical underlying assumption: the choice of distance for synaptic changes - i.e. the geometry of synaptic plasticity. Gradient descent assumes that the distance is Euclidean, but many other distances are possible, and there is no reason that biology necessarily uses Euclidean geometry. Here, using the theoretical tools provided by mirror descent, we show that the distribution of synaptic weights will depend on the geometry of synaptic plasticity. We use these results to show that experimentally-observed log-normal weight distributions found in several brain areas are not consistent with standard gradient descent (i.e. a Euclidean geometry), but rather with non-Euclidean distances. Finally, we show that it should be possible to experimentally test for different synaptic geometries by comparing synaptic weight distributions before and after learning. Overall, our work shows that the current paradigm in theoretical work on synaptic plasticity that assumes Euclidean synaptic geometry may be misguided and that it should be possible to experimentally determine the true geometry of synaptic plasticity in the brain.

Data similarity assumptions have traditionally been relied upon to understand the convergence behaviors of federated learning methods. Unfortunately, this approach often demands fine-tuning step sizes based on the level of data similarity. When data similarity is low, these small step sizes result in an unacceptably slow convergence speed for federated methods. In this paper, we present a novel and unified framework for analyzing the convergence of federated learning algorithms without the need for data similarity conditions. Our analysis centers on an inequality that captures the influence of step sizes on algorithmic convergence performance. By applying our theorems to well-known federated algorithms, we derive precise expressions for three widely used step size schedules: fixed, diminishing, and step-decay step sizes, which are independent of data similarity conditions. Finally, we conduct comprehensive evaluations of the performance of these federated learning algorithms, employing the proposed step size strategies to train deep neural network models on benchmark datasets under varying data similarity conditions. Our findings demonstrate significant improvements in convergence speed and overall performance, marking a substantial advancement in federated learning research.

Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

北京阿比特科技有限公司