亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Development of multi-modal, probabilistic prediction models has lead to a need for comprehensive evaluation metrics. While several metrics can characterize the accuracy of machine-learned models (e.g., negative log-likelihood, Jensen-Shannon divergence), these metrics typically operate on probability densities. Applying them to purely sample-based prediction models thus requires that the underlying density function is estimated. However, common methods such as kernel density estimation (KDE) have been demonstrated to lack robustness, while more complex methods have not been evaluated in multi-modal estimation problems. In this paper, we present ROME (RObust Multi-modal density Estimator), a non-parametric approach for density estimation which addresses the challenge of estimating multi-modal, non-normal, and highly correlated distributions. ROME utilizes clustering to segment a multi-modal set of samples into multiple uni-modal ones and then combines simple KDE estimates obtained for individual clusters in a single multi-modal estimate. We compared our approach to state-of-the-art methods for density estimation as well as ablations of ROME, showing that it not only outperforms established methods but is also more robust to a variety of distributions. Our results demonstrate that ROME can overcome the issues of over-fitting and over-smoothing exhibited by other estimators, promising a more robust evaluation of probabilistic machine learning models.

相關內容

Physical reservoir computing (RC) is a machine learning algorithm that employs the dynamics of a physical system to forecast highly nonlinear and chaotic phenomena. In this paper, we introduce a quantum RC system that employs the dynamics of a probed atom in a cavity. The atom experiences coherent driving at a particular rate, leading to a measurement-controlled quantum evolution. The proposed quantum reservoir can make fast and reliable forecasts using a small number of artificial neurons compared with the traditional RC algorithm. We theoretically validate the operation of the reservoir, demonstrating its potential to be used in error-tolerant applications, where approximate computing approaches may be used to make feasible forecasts in conditions of limited computational and energy resources.

The conditional mutual information quantifies the conditional dependence of two random variables. It has numerous applications; it forms, for example, part of the definition of transfer entropy, a common measure of the causal relationship between time series. It does, however, require a lot of data to estimate accurately and suffers the curse of dimensionality, limiting its application in machine learning and data science. However, the Kozachenko-Leonenko approach can address this problem: it is possible, in this approach to define a nearest-neighbour estimator which depends only on the distance between data points and not on the dimension of the data. Furthermore, the bias can be calculated analytically for this estimator. Here this estimator is described and is tested on simulated data.

The vector autoregression (VAR) has been widely used in system identification, econometrics, natural science, and many other areas. However, when the state dimension becomes large the parameter dimension explodes. So rank reduced modelling is attractive and is well developed. But a fundamental requirement in almost all applications is stability of the fitted model. And this has not been addressed in the rank reduced case. Here, we develop, for the first time, a closed-form formula for an estimator of a rank reduced transition matrix which is guaranteed to be stable. We show that our estimator is consistent and asymptotically statistically efficient and illustrate it in comparative simulations.

We initiate the study of Local Computation Algorithms on average case inputs. In the Local Computation Algorithm (LCA) model, we are given probe access to a huge graph, and asked to answer membership queries about some combinatorial structure on the graph, answering each query with sublinear work. For instance, an LCA for the $k$-spanner problem gives access to a sparse subgraph $H\subseteq G$ that preserves distances up to a factor of $k$. We build simple LCAs for this problem assuming the input graph is drawn from the well-studied Erdos-Reyni and Preferential Attachment graph models. In both cases, our spanners achieve size and stretch tradeoffs that are impossible to achieve for general graphs, while having dramatically lower query complexity than worst-case LCAs. Our second result investigates the intersection of LCAs with Local Access Generators (LAGs). Local Access Generators provide efficient query access to a random object, for instance an Erdos Reyni random graph. We explore the natural problem of generating a random graph together with a combinatorial structure on it. We show that this combination can be easier to solve than focusing on each problem by itself, by building a fast, simple algorithm that provides access to an Erdos Reyni random graph together with a maximal independent set.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

The essence of multivariate sequential learning is all about how to extract dependencies in data. These data sets, such as hourly medical records in intensive care units and multi-frequency phonetic time series, often time exhibit not only strong serial dependencies in the individual components (the "marginal" memory) but also non-negligible memories in the cross-sectional dependencies (the "joint" memory). Because of the multivariate complexity in the evolution of the joint distribution that underlies the data generating process, we take a data-driven approach and construct a novel recurrent network architecture, termed Memory-Gated Recurrent Networks (mGRN), with gates explicitly regulating two distinct types of memories: the marginal memory and the joint memory. Through a combination of comprehensive simulation studies and empirical experiments on a range of public datasets, we show that our proposed mGRN architecture consistently outperforms state-of-the-art architectures targeting multivariate time series.

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Graph Convolutional Networks (GCNs) have received increasing attention in recent machine learning. How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly optimizing the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the GEneralized Multi-relational Graph Convolutional Networks (GEM-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge-base embedding methods, and goes beyond. Our theoretical analysis shows that GEM-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of GEM-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

Advanced methods of applying deep learning to structured data such as graphs have been proposed in recent years. In particular, studies have focused on generalizing convolutional neural networks to graph data, which includes redefining the convolution and the downsampling (pooling) operations for graphs. The method of generalizing the convolution operation to graphs has been proven to improve performance and is widely used. However, the method of applying downsampling to graphs is still difficult to perform and has room for improvement. In this paper, we propose a graph pooling method based on self-attention. Self-attention using graph convolution allows our pooling method to consider both node features and graph topology. To ensure a fair comparison, the same training procedures and model architectures were used for the existing pooling methods and our method. The experimental results demonstrate that our method achieves superior graph classification performance on the benchmark datasets using a reasonable number of parameters.

北京阿比特科技有限公司