亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a two-person network inspection game, in which a defender positions a limited number of detectors to detect multiple attacks caused by an attacker. We assume that detection is imperfect, and each detector location is associated with a probability of detecting attacks within its set of monitored network components. The objective of the defender (resp. attacker) is to minimize (resp. maximize) the expected number of undetected attacks. To compute Nash Equilibria (NE) for this large-scale zero-sum game, we formulate a linear program with a small number of constraints, which we solve via column generation. We provide an exact mixed-integer program for the pricing problem, which entails computing a defender's pure best response, and leverage its supermodular structure to derive two efficient approaches to obtain approximate NE with theoretical guarantees: A column generation and a multiplicative weights update (MWU) algorithm with approximate best responses. To address the computational challenges posed by combinatorial attacker strategies, each iteration of our MWU algorithm requires computing a projection under the unnormalized relative entropy. We provide a closed-form solution and a linear-time algorithm for the projection problem. Our computational results in real-world gas distribution networks illustrate the performance and scalability of our solution approaches.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Label noise, commonly found in real-world datasets, has a detrimental impact on a model's generalization. To effectively detect incorrectly labeled instances, previous works have mostly relied on distinguishable training signals, such as training loss, as indicators to differentiate between clean and noisy labels. However, they have limitations in that the training signals incompletely reveal the model's behavior and are not effectively generalized to various noise types, resulting in limited detection accuracy. In this paper, we propose DynaCor framework that distinguishes incorrectly labeled instances from correctly labeled ones based on the dynamics of the training signals. To cope with the absence of supervision for clean and noisy labels, DynaCor first introduces a label corruption strategy that augments the original dataset with intentionally corrupted labels, enabling indirect simulation of the model's behavior on noisy labels. Then, DynaCor learns to identify clean and noisy instances by inducing two clearly distinguishable clusters from the latent representations of training dynamics. Our comprehensive experiments show that DynaCor outperforms the state-of-the-art competitors and shows strong robustness to various noise types and noise rates.

We consider a decentralized optimization problem for networks affected by communication delays. Examples of such networks include collaborative machine learning, sensor networks, and multi-agent systems. To mimic communication delays, we add virtual non-computing nodes to the network, resulting in directed graphs. This motivates investigating decentralized optimization solutions on directed graphs. Existing solutions assume nodes know their out-degrees, resulting in limited applicability. To overcome this limitation, we introduce a novel gossip-based algorithm, called DT-GO, that does not need to know the out-degrees. The algorithm is applicable in general directed networks, for example networks with delays or limited acknowledgment capabilities. We derive convergence rates for both convex and non-convex objectives, showing that our algorithm achieves the same complexity order as centralized Stochastic Gradient Descent. In other words, the effects of the graph topology and delays are confined to higher-order terms. Additionally, we extend our analysis to accommodate time-varying network topologies. Numerical simulations are provided to support our theoretical findings.

Collaborative edge computing has become a popular paradigm where edge devices collaborate by sharing resources. Data dissemination is a fundamental problem in CEC to decide what data is transmitted from which device and how. Existing works on data dissemination have not focused on coflow scheduling in CEC, which involves deciding the order of flows within and across coflows at network links. Coflow implies a set of parallel flows with a shared objective. The existing works on coflow scheduling in data centers usually assume a non-blocking switch and do not consider congestion at different links in the multi-hop path in CEC, leading to increased coflow completion time (CCT). Furthermore, existing works do not consider multiple flow sources that cannot be ignored, as data can have duplicate copies at different edge devices. This work formulates the multi-source coflow scheduling problem in CEC, which includes jointly deciding the source and flow ordering for multiple coflows to minimize the sum of CCT. This problem is shown to be NP-hard and challenging as each flow can have multiple dependent conflicts at multiple links. We propose a source and coflow-aware search and adjust (SCASA) heuristic that first provides an initial solution considering the coflow characteristics. SCASA further improves the initial solution using the source search and adjust heuristic by leveraging the knowledge of both coflows and network congestion at links. Evaluation done using simulation experiments shows that SCASA leads to up to 83% reduction in the sum of CCT compared to benchmarks without a joint solution.

Motivated by the success of Transformers when applied to sequences of discrete symbols, token-based world models (TBWMs) were recently proposed as sample-efficient methods. In TBWMs, the world model consumes agent experience as a language-like sequence of tokens, where each observation constitutes a sub-sequence. However, during imagination, the sequential token-by-token generation of next observations results in a severe bottleneck, leading to long training times, poor GPU utilization, and limited representations. To resolve this bottleneck, we devise a novel Parallel Observation Prediction (POP) mechanism. POP augments a Retentive Network (RetNet) with a novel forward mode tailored to our reinforcement learning setting. We incorporate POP in a novel TBWM agent named REM (Retentive Environment Model), showcasing a 15.4x faster imagination compared to prior TBWMs. REM attains superhuman performance on 12 out of 26 games of the Atari 100K benchmark, while training in less than 12 hours. Our code is available at \url{//github.com/leor-c/REM}.

Principal stratification provides a causal inference framework that allows adjustment for confounded post-treatment variables when comparing treatments. Although the literature has focused mainly on binary post-treatment variables, there is a growing interest in principal stratification involving continuous post-treatment variables. However, characterizing the latent principal strata with a continuous post-treatment presents a significant challenge, which is further complicated in observational studies where the treatment is not randomized. In this paper, we introduce the Confounders-Aware SHared atoms BAyesian mixture (CASBAH), a novel approach for principal stratification with continuous post-treatment variables that can be directly applied to observational studies. CASBAH leverages a dependent Dirichlet process, utilizing shared atoms across treatment levels, to effectively control for measured confounders and facilitate information sharing between treatment groups in the identification of principal strata membership. CASBAH also offers a comprehensive quantification of uncertainty surrounding the membership of the principal strata. Through Monte Carlo simulations, we show that the proposed methodology has excellent performance in characterizing the latent principal strata and estimating the effects of treatment on post-treatment variables and outcomes. Finally, CASBAH is applied to a case study in which we estimate the causal effects of US national air quality regulations on pollution levels and health outcomes.

When two players are engaged in a repeated game with unknown payoff matrices, they may be completely unaware of the existence of each other and use multi-armed bandit algorithms to choose the actions, which is referred to as the ``blindfolded game'' in this paper. We show that when the players use Thompson sampling, the game dynamics converges to the Nash equilibrium under a mild assumption on the payoff matrices. Therefore, algorithmic collusion doesn't arise in this case despite the fact that the players do not intentionally deploy competitive strategies. To prove the convergence result, we find that the framework developed in stochastic approximation doesn't apply, because of the sporadic and infrequent updates of the inferior actions and the lack of Lipschitz continuity. We develop a novel sample-path-wise approach to show the convergence.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司