亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Units of measure with prefixes and conversion rules are given a formal semantic model in terms of categorial group theory. Basic structures and both natural and contingent semantic operations are defined. Conversion rules are represented as a class of ternary relations with both group-like and category-like properties. A hierarchy of subclasses is explored, each satisfying stronger useful algebraic properties than the preceding, culminating in a direct efficient conversion-by-rewriting algorithm.

相關內容

Beginner's All-purpose Symbolic Instruction Code(初學者通(tong)用的符號指令代(dai)碼),剛開(kai)始被(bei)作者寫做 BASIC,后(hou)來被(bei)微軟(ruan)廣(guang)泛地叫(jiao)做 Basic 。

Metamaterials with functional responses, such as wave-based responses or deformation-induced property variation under external stimuli, can exhibit varying properties or functionalities under different conditions. Herein, we aim at rapid inverse design of these metamaterials to meet target qualitative functional behaviors. This inverse problem is challenging due to its intractability and the existence of non-unique solutions. Past works mainly focus on deep-learning-based methods that are data-demanding, require time-consuming training and hyperparameter tuning, and are non-interpretable. To overcome these limitations, we propose the Random-forest-based Interpretable Generative Inverse Design (RIGID), an iteration-free, single-shot inverse design method to achieve the fast generation of metamaterial designs with on-demand functional behaviors. Unlike most existing methods, by exploiting the interpretability of the random forest, we eliminate the need to train an inverse model mapping responses to designs. Based on the likelihood of target satisfaction derived from the trained forward model, one can sample design solutions using Markov chain Monte Carlo methods. The RIGID method therefore functions as a generative model that captures the conditional distribution of satisfying solutions given a design target. We demonstrate the effectiveness and efficiency of RIGID on both acoustic and optical metamaterial design problems where only small datasets (less than 250 training samples) are available. Synthetic design problems are created to further illustrate and validate the mechanism of likelihood estimation in RIGID. This work offers a new perspective on solving on-demand inverse design problems, showcasing the potential for incorporating interpretable machine learning into generative design and eliminating its large data requirement.

Forming oral models capable of understanding the complete dynamics of the oral cavity is vital across research areas such as speech correction, designing foods for the aging population, and dentistry. Magnetic resonance imaging (MRI) technologies, capable of capturing oral data essential for creating such detailed representations, offer a powerful tool for illustrating articulatory dynamics. However, its real-time application is hindered by expense and expertise requirements. Ever advancing generative AI approaches present themselves as a way to address this barrier by leveraging multi-modal approaches for generating pseudo-MRI views. Nonetheless, this immediately sparks ethical concerns regarding the utilisation of a technology with the capability to produce MRIs from facial observations. This paper explores the ethical implications of external-to-internal correlation modeling (E2ICM). E2ICM utilises facial movements to infer internal configurations and provides a cost-effective supporting technology for MRI. In this preliminary work, we employ Pix2PixGAN to generate pseudo-MRI views from external articulatory data, demonstrating the feasibility of this approach. Ethical considerations concerning privacy, consent, and potential misuse, which are fundamental to our examination of this innovative methodology, are discussed as a result of this experimentation.

Hashing functions, which are created to provide brief and erratic digests for the message entered, are the primary cryptographic primitives used in blockchain networks. Hashing is employed in blockchain networks to create linked block lists, which offer safe and secure distributed repository storage for critical information. Due to the unique nature of the hash search problem in blockchain networks, the most parallelization of calculations is possible. This technical report presents a performance evaluation of three popular hashing algorithms Blake3, SHA-256, and SHA-512. These hashing algorithms are widely used in various applications, such as digital signatures, message authentication, and password storage. It then discusses the performance metrics used to evaluate the algorithms, such as hash rate/throughput and memory usage. The evaluation is conducted on a range of hardware platforms, including desktop and VMs. The evaluation includes synthetic benchmarks. The results of the evaluation show that Blake3 generally outperforms both SHA-256 and SHA-512 in terms of throughput and latency. However, the performance advantage of Blake3 varies depending on the specific hardware platform and the size of the input data. The report concludes with recommendations for selecting the most suitable hashing algorithm for a given application, based on its performance requirements and security needs. The evaluation results can also inform future research and development efforts to improve the performance and security of hashing algorithms.

Structural equation models (SEMs) are commonly used to study the structural relationship between observed variables and latent constructs. Recently, Bayesian fitting procedures for SEMs have received more attention thanks to their potential to facilitate the adoption of more flexible model structures, and variational approximations have been shown to provide fast and accurate inference for Bayesian analysis of SEMs. However, the application of variational approximations is currently limited to very simple, elemental SEMs. We develop mean-field variational Bayes algorithms for two SEM formulations for data that present non-Gaussian features such as skewness and multimodality. The proposed models exploit the use of mixtures of Gaussians, include covariates for the analysis of latent traits and consider missing data. We also examine two variational information criteria for model selection that are straightforward to compute in our variational inference framework. The performance of the MFVB algorithms and information criteria is investigated in a simulated data study and a real data application.

The zero-shot effectiveness of neural retrieval models is often evaluated on the BEIR benchmark -- a combination of different IR evaluation datasets. Interestingly, previous studies found that particularly on the BEIR subset Touch\'e 2020, an argument retrieval task, neural retrieval models are considerably less effective than BM25. Still, so far, no further investigation has been conducted on what makes argument retrieval so "special". To more deeply analyze the respective potential limits of neural retrieval models, we run a reproducibility study on the Touch\'e 2020 data. In our study, we focus on two experiments: (i) a black-box evaluation (i.e., no model retraining), incorporating a theoretical exploration using retrieval axioms, and (ii) a data denoising evaluation involving post-hoc relevance judgments. Our black-box evaluation reveals an inherent bias of neural models towards retrieving short passages from the Touch\'e 2020 data, and we also find that quite a few of the neural models' results are unjudged in the Touch\'e 2020 data. As many of the short Touch\'e passages are not argumentative and thus non-relevant per se, and as the missing judgments complicate fair comparison, we denoise the Touch\'e 2020 data by excluding very short passages (less than 20 words) and by augmenting the unjudged data with post-hoc judgments following the Touch\'e guidelines. On the denoised data, the effectiveness of the neural models improves by up to 0.52 in nDCG@10, but BM25 is still more effective. Our code and the augmented Touch\'e 2020 dataset are available at \url{//github.com/castorini/touche-error-analysis}.

Shared dynamics models are important for capturing the complexity and variability inherent in Human-Robot Interaction (HRI). Therefore, learning such shared dynamics models can enhance coordination and adaptability to enable successful reactive interactions with a human partner. In this work, we propose a novel approach for learning a shared latent space representation for HRIs from demonstrations in a Mixture of Experts fashion for reactively generating robot actions from human observations. We train a Variational Autoencoder (VAE) to learn robot motions regularized using an informative latent space prior that captures the multimodality of the human observations via a Mixture Density Network (MDN). We show how our formulation derives from a Gaussian Mixture Regression formulation that is typically used approaches for learning HRI from demonstrations such as using an HMM/GMM for learning a joint distribution over the actions of the human and the robot. We further incorporate an additional regularization to prevent "mode collapse", a common phenomenon when using latent space mixture models with VAEs. We find that our approach of using an informative MDN prior from human observations for a VAE generates more accurate robot motions compared to previous HMM-based or recurrent approaches of learning shared latent representations, which we validate on various HRI datasets involving interactions such as handshakes, fistbumps, waving, and handovers. Further experiments in a real-world human-to-robot handover scenario show the efficacy of our approach for generating successful interactions with four different human interaction partners.

We explore the use of deep learning to localise galactic structures in low surface brightness (LSB) images. LSB imaging reveals many interesting structures, though these are frequently confused with galactic dust contamination, due to a strong local visual similarity. We propose a novel unified approach to multi-class segmentation of galactic structures and of extended amorphous image contaminants. Our panoptic segmentation model combines Mask R-CNN with a contaminant specialised network and utilises an adaptive preprocessing layer to better capture the subtle features of LSB images. Further, a human-in-the-loop training scheme is employed to augment ground truth labels. These different approaches are evaluated in turn, and together greatly improve the detection of both galactic structures and contaminants in LSB images.

The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.

The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

北京阿比特科技有限公司