亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This study investigates how online counterspeech, defined as direct responses to harmful online content with the intention of dissuading the perpetrator from further engaging in such behavior, is influenced by the match between a target of the hate speech and a counterspeech writer's identity. Using a sample of 458 English-speaking adults who responded to online hate speech posts covering race, gender, religion, sexual orientation, and disability status, our research reveals that the match between a hate post's topic and a counter-speaker's identity (topic-identity match, or TIM) shapes perceptions of hatefulness and experiences with counterspeech writing. Specifically, TIM significantly increases the perceived hatefulness of posts related to race and sexual orientation. TIM generally boosts counter-speakers' satisfaction and perceived effectiveness of their responses, and reduces the difficulty of crafting them, with an exception of gender-focused hate speech. In addition, counterspeech that displayed more empathy, was longer, had a more positive tone, and was associated with higher ratings of effectiveness and perceptions of hatefulness. Prior experience with, and openness to AI writing assistance tools like ChatGPT, correlate negatively with perceived difficulty in writing online counterspeech. Overall, this study contributes insights into linguistic and identity-related factors shaping counterspeech on social media. The findings inform the development of supportive technologies and moderation strategies for promoting effective responses to online hate.

相關內容

Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of language model pre-training. This paper demonstrates that the optimal composition of training data from different domains is scale-dependent, challenging the existing practice of determining optimal mixtures through small-scale experiments and directly applying them at larger scales. We derive an analytical model for the dependence of optimal weights on data scale and introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales. *AutoScale* first uses a principled optimization framework to find optimal compositions at smaller, feasible scales, then predicts optimal compositions at larger scales using our derived model. Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance. Particularly, for GPT-2 Large on RedPajama, *AutoScale* decreases validation perplexity 28% faster than baselines, with up to 38% speed-up over unweighted training, achieving the best performance across downstream tasks. This work provides insights into the varying benefits of data sources across training scales for language models, contributing to the burgeoning research on scale-dependent data curation. Code is open-sourced.

The massive proliferation of social media data represents a transformative opportunity for conflict studies and for tracking the proliferation and use of weaponry, as conflicts are increasingly documented in these online spaces. At the same time, the scale and types of data available are problematic for traditional open-source intelligence. This paper focuses on identifying specific weapon systems and the insignias of the armed groups using them as documented in the Ukraine war, as these tasks are critical to operational intelligence and tracking weapon proliferation, especially given the scale of international military aid given to Ukraine. The large scale of social media makes manual assessment difficult, however, so this paper presents early work that uses computer vision models to support this task. We demonstrate that these models can both identify weapons embedded in images shared in social media and how the resulting collection of military-relevant images and their post times interact with the offline, real-world conflict. Not only can we then track changes in the prevalence of images of tanks, land mines, military trucks, etc., we find correlations among time series data associated with these images and the daily fatalities in this conflict. This work shows substantial opportunity for examining similar online documentation of conflict contexts, and we also point to future avenues where computer vision can be further improved for these open-source intelligence tasks.

Two substantial technological advances have reshaped the public square in recent decades: first with the advent of the internet and second with the recent introduction of large language models (LLMs). LLMs offer opportunities for a paradigm shift towards more decentralized, participatory online spaces that can be used to facilitate deliberative dialogues at scale, but also create risks of exacerbating societal schisms. Here, we explore four applications of LLMs to improve digital public squares: collective dialogue systems, bridging systems, community moderation, and proof-of-humanity systems. Building on the input from over 70 civil society experts and technologists, we argue that LLMs both afford promising opportunities to shift the paradigm for conversations at scale and pose distinct risks for digital public squares. We lay out an agenda for future research and investments in AI that will strengthen digital public squares and safeguard against potential misuses of AI.

This short communication shows that the Chessography encryption scheme is incorrect, redundant, and the the security claims based on the complexity of chess games are unjustified. It also demonstrates an insufficient randomness in the final chess game positions, which could be of separate interest.

We conduct a field experiment on a movie-recommendation platform to investigate whether and how online recommendations influence consumption choices. Using a within-subjects design, our experiment measures the causal effect of recommendations on consumption and decomposes the relative importance of two economic mechanisms: expanding consumers' consideration sets and providing information about their idiosyncratic match value. We find that the informational component exerts a stronger influence - recommendations shape consumer beliefs, which in turn drive consumption, particularly among less experienced consumers. Our findings and experimental design provide valuable insights for the economic evaluation and optimisation of online recommendation systems.

Multimodality Representation Learning, as a technique of learning to embed information from different modalities and their correlations, has achieved remarkable success on a variety of applications, such as Visual Question Answering (VQA), Natural Language for Visual Reasoning (NLVR), and Vision Language Retrieval (VLR). Among these applications, cross-modal interaction and complementary information from different modalities are crucial for advanced models to perform any multimodal task, e.g., understand, recognize, retrieve, or generate optimally. Researchers have proposed diverse methods to address these tasks. The different variants of transformer-based architectures performed extraordinarily on multiple modalities. This survey presents the comprehensive literature on the evolution and enhancement of deep learning multimodal architectures to deal with textual, visual and audio features for diverse cross-modal and modern multimodal tasks. This study summarizes the (i) recent task-specific deep learning methodologies, (ii) the pretraining types and multimodal pretraining objectives, (iii) from state-of-the-art pretrained multimodal approaches to unifying architectures, and (iv) multimodal task categories and possible future improvements that can be devised for better multimodal learning. Moreover, we prepare a dataset section for new researchers that covers most of the benchmarks for pretraining and finetuning. Finally, major challenges, gaps, and potential research topics are explored. A constantly-updated paperlist related to our survey is maintained at //github.com/marslanm/multimodality-representation-learning.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

北京阿比特科技有限公司