亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The concept of cyber deception has been receiving emerging attention. The development of cyber defensive deception techniques requires interdisciplinary work, among which cognitive science plays an important role. In this work, we adopt a signaling game framework between a defender and a human agent to develop a cyber defensive deception protocol that takes advantage of the cognitive biases of human decision-making using quantum decision theory to combat insider attacks (IA). The defender deceives an inside human attacker by luring him to access decoy sensors via generators producing perceptions of classical signals to manipulate the human attacker's psychological state of mind. Our results reveal that even without changing the classical traffic data, strategically designed generators can result in a worse performance for defending against insider attackers in identifying decoys than the ones in the deceptive scheme without generators, which generate random information based on input signals. The proposed framework leads to fundamental theories in designing more effective signaling schemes.

相關內容

Edge-device collaboration has the potential to facilitate compute-intensive device pose tracking for resource-constrained mobile augmented reality (MAR) devices. In this paper, we devise a 3D map management scheme for edge-assisted MAR, wherein an edge server constructs and updates a 3D map of the physical environment by using the camera frames uploaded from an MAR device, to support local device pose tracking. Our objective is to minimize the uncertainty of device pose tracking by periodically selecting a proper set of uploaded camera frames and updating the 3D map. To cope with the dynamics of the uplink data rate and the user's pose, we formulate a Bayes-adaptive Markov decision process problem and propose a digital twin (DT)-based approach to solve the problem. First, a DT is designed as a data model to capture the time-varying uplink data rate, thereby supporting 3D map management. Second, utilizing extensive generated data provided by the DT, a model-based reinforcement learning algorithm is developed to manage the 3D map while adapting to these dynamics. Numerical results demonstrate that the designed DT outperforms Markov models in accurately capturing the time-varying uplink data rate, and our devised DT-based 3D map management scheme surpasses benchmark schemes in reducing device pose tracking uncertainty.

Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there were finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, many real-world data are not naturally posed in the setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions, and then convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is further developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications.

A generative AI model can generate extremely realistic-looking content, posing growing challenges to the authenticity of information. To address the challenges, watermark has been leveraged to detect AI-generated content. Specifically, a watermark is embedded into an AI-generated content before it is released. A content is detected as AI-generated if a similar watermark can be decoded from it. In this work, we perform a systematic study on the robustness of such watermark-based AI-generated content detection. We focus on AI-generated images. Our work shows that an attacker can post-process a watermarked image via adding a small, human-imperceptible perturbation to it, such that the post-processed image evades detection while maintaining its visual quality. We show the effectiveness of our attack both theoretically and empirically. Moreover, to evade detection, our adversarial post-processing method adds much smaller perturbations to AI-generated images and thus better maintain their visual quality than existing popular post-processing methods such as JPEG compression, Gaussian blur, and Brightness/Contrast. Our work shows the insufficiency of existing watermark-based detection of AI-generated content, highlighting the urgent needs of new methods. Our code is publicly available: //github.com/zhengyuan-jiang/WEvade.

The blockchain brought interesting properties for many practical applications. However, some properties, such as the transaction processing throughput remained limited, especially in Proof-of-Work blockchains. Therefore, several promising directions, such as sharding designs and DAG-based protocols emerged. In this paper, we focus on DAG-based consensus protocols and present a discrete-event simulator for them. Our simulator can simulate realistic blockchain networks created from data of a Bitcoin network, while its network configuration and topology can be customized. The simulated network consists of honest and malicious miners. Malicious miners do not make any attack on consensus itself. Instead, they use a different transaction selection strategy than honest miners (who select transactions randomly) with the intention to earn unfairly more profits than honest miners at the cost of downgrading the protocol performance by duplicate transactions. As a consequence, this harms the performance of some DAG-based protocols (e.g., PHANTOM and GHOSTDAG) in terms of transaction processing throughput, which we demonstrate in our experiments and extend the results of the related work that contains a small-scale network of 10 nodes by the results obtained on a large-scale network with 7000 nodes. Next, we empirically compare different algorithms for the mempool structure, and we propose a composite mempool structure that is memory-efficient and thus convenient for simulations of resource-demanding large-scale networks.

Many constraint satisfaction and optimisation problems can be solved effectively by encoding them as instances of the Boolean Satisfiability problem (SAT). However, even the simplest types of constraints have many encodings in the literature with widely varying performance, and the problem of selecting suitable encodings for a given problem instance is not trivial. We explore the problem of selecting encodings for pseudo-Boolean and linear constraints using a supervised machine learning approach. We show that it is possible to select encodings effectively using a standard set of features for constraint problems; however we obtain better performance with a new set of features specifically designed for the pseudo-Boolean and linear constraints. In fact, we achieve good results when selecting encodings for unseen problem classes. Our results compare favourably to AutoFolio when using the same feature set. We discuss the relative importance of instance features to the task of selecting the best encodings, and compare several variations of the machine learning method.

Designing and analyzing model-based RL (MBRL) algorithms with guaranteed monotonic improvement has been challenging, mainly due to the interdependence between policy optimization and model learning. Existing discrepancy bounds generally ignore the impacts of model shifts, and their corresponding algorithms are prone to degrade performance by drastic model updating. In this work, we first propose a novel and general theoretical scheme for a non-decreasing performance guarantee of MBRL. Our follow-up derived bounds reveal the relationship between model shifts and performance improvement. These discoveries encourage us to formulate a constrained lower-bound optimization problem to permit the monotonicity of MBRL. A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns. Motivated by these analyses, we design a simple but effective algorithm CMLO (Constrained Model-shift Lower-bound Optimization), by introducing an event-triggered mechanism that flexibly determines when to update the model. Experiments show that CMLO surpasses other state-of-the-art methods and produces a boost when various policy optimization methods are employed.

Many important science and engineering problems can be converted into NP-complete problems which are of significant importance in computer science and mathematics. Currently, neither existing classical nor quantum algorithms can solve these problems in polynomial time. To address this difficulty, this paper proposes a quantum feasibility labeling (QFL) algorithm to label all possible solutions to the vertex coloring problem, which is a well-known NP-complete problem. The QFL algorithm converts the vertex coloring problem into the problem of searching an unstructured database where good and bad elements are labeled. The recently proposed variational quantum search (VQS) algorithm was demonstrated to achieve an exponential speedup, in circuit depth, up to 26 qubits in finding good element(s) from an unstructured database. Using the labels and the associated possible solutions as input, the VQS can find all feasible solutions to the vertex coloring problem. The number of qubits and the circuit depth required by the QFL each is a polynomial function of the number of vertices, the number of edges, and the number of colors of a vertex coloring problem. We have implemented the QFL on an IBM Qiskit simulator to solve a 4-colorable 4-vertex 3-edge coloring problem.

Ratings are frequently used to evaluate and compare subjects in various applications, from education to healthcare, because ratings provide succinct yet credible measures for comparing subjects. However, when multiple rating lists are combined or considered together, subjects often have missing ratings, because most rating lists do not rate every subject in the combined list. In this study, we propose analyses on missing value patterns using six real-world data sets in various applications, as well as the conditions for applicability of imputation algorithms. Based on the special structures and properties derived from the analyses, we propose optimization models and algorithms that minimize the total rating discordance across rating providers to impute missing ratings in the combined rating lists, using only the known rating information. The total rating discordance is defined as the sum of the pairwise discordance metric, which can be written as a quadratic function. Computational experiments based on real-world and synthetic rating data sets show that the proposed methods outperform the state-of-the-art general imputation methods in the literature in terms of imputation accuracy.

Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司