Over the last few decades, Smartphone technology has seen significant improvements. Enhancements specific to built-in Inertial Measurement Units (IMUs) and other dedicated sensors of the smartphones(which are often available as default) such as- Accelerometer, Gyroscope, Magnetometer, Fingerprint reader, Proximity and Ambient light sensors have made devices smarter and the interaction seamless. Gesture recognition using these smart phones have been experimented with many techniques. In this solution, a Recurrent Neural Network (RNN) approach, LSTM (Long-Short Term Memory Cells) has been used to classify ten different gestures based on data from Accelerometer and Gyroscope. Selection of sensor data (Accelerometer and Gyroscope) was based on the ones that provided maximum information regarding the movement and orientation of the phone. Various models were experimented in this project, the results of which are presented in the later sections. Furthermore, the properties and characteristics of the collected data were studied and a set of improvements have been suggested in the future work section.
The rapid growth in Internet of Things (IoT) technology has become an integral part of today's industries forming the Industrial IoT (IIoT) initiative, where industries are leveraging IoT to improve communication and connectivity via emerging solutions like data analytics and cloud computing. Unfortunately, the rapid use of IoT has made it an attractive target for cybercriminals. Therefore, protecting these systems is of utmost importance. In this paper, we propose a federated transfer learning (FTL) approach to perform IIoT network intrusion detection. As part of the research, we also propose a combinational neural network as the centerpiece for performing FTL. The proposed technique splits IoT data between the client and server devices to generate corresponding models, and the weights of the client models are combined to update the server model. Results showcase high performance for the FTL setup between iterations on both the IIoT clients and the server. Additionally, the proposed FTL setup achieves better overall performance than contemporary machine learning algorithms at performing network intrusion detection.
Recent advances in deep learning and automatic speech recognition (ASR) have enabled the end-to-end (E2E) ASR system and boosted the accuracy to a new level. The E2E systems implicitly model all conventional ASR components, such as the acoustic model (AM) and the language model (LM), in a single network trained on audio-text pairs. Despite this simpler system architecture, fusing a separate LM, trained exclusively on text corpora, into the E2E system has proven to be beneficial. However, the application of LM fusion presents certain drawbacks, such as its inability to address the domain mismatch issue inherent to the internal AM. Drawing inspiration from the concept of LM fusion, we propose the integration of an external AM into the E2E system to better address the domain mismatch. By implementing this novel approach, we have achieved a significant reduction in the word error rate, with an impressive drop of up to 14.3% across varied test sets. We also discovered that this AM fusion approach is particularly beneficial in enhancing named entity recognition.
With the growing connectivity demands, Unmanned Aerial Vehicles (UAVs) have emerged as a prominent component in the deployment of Next Generation On-demand Wireless Networks. However, current UAV positioning solutions typically neglect the impact of Rate Adaptation (RA) algorithms or simplify its effect by considering ideal and non-implementable RA algorithms. This work proposes the Rate Adaptation aware RL-based Flying Gateway Positioning (RARL) algorithm, a positioning method for Flying Gateways that applies Deep Q-Learning, accounting for the dynamic data rate imposed by the underlying RA algorithm. The RARL algorithm aims to maximize the throughput of the flying wireless links serving one or more Flying Access Points, which in turn serve ground terminals. The performance evaluation of the RARL algorithm demonstrates that it is capable of taking into account the effect of the underlying RA algorithm and achieve the maximum throughput in all analysed static and mobile scenarios.
The problem of audio-to-text alignment has seen significant amount of research using complete supervision during training. However, this is typically not in the context of long audio recordings wherein the text being queried does not appear verbatim within the audio file. This work is a collaboration with a non-governmental organization called CARE India that collects long audio health surveys from young mothers residing in rural parts of Bihar, India. Given a question drawn from a questionnaire that is used to guide these surveys, we aim to locate where the question is asked within a long audio recording. This is of great value to African and Asian organizations that would otherwise have to painstakingly go through long and noisy audio recordings to locate questions (and answers) of interest. Our proposed framework, INDENT, uses a cross-attention-based model and prior information on the temporal ordering of sentences to learn speech embeddings that capture the semantics of the underlying spoken text. These learnt embeddings are used to retrieve the corresponding audio segment based on text queries at inference time. We empirically demonstrate the significant effectiveness (improvement in R-avg of about 3%) of our model over those obtained using text-based heuristics. We also show how noisy ASR, generated using state-of-the-art ASR models for Indian languages, yields better results when used in place of speech. INDENT, trained only on Hindi data is able to cater to all languages supported by the (semantically) shared text space. We illustrate this empirically on 11 Indic languages.
While there has been significant progress in ASR, African-accented clinical ASR has been understudied due to a lack of training datasets. Building robust ASR systems in this domain requires large amounts of annotated or labeled data, for a wide variety of linguistically and morphologically rich accents, which are expensive to create. Our study aims to address this problem by reducing annotation expenses through informative uncertainty-based data selection. We show that incorporating epistemic uncertainty into our adaptation rounds outperforms several baseline results, established using state-of-the-art (SOTA) ASR models, while reducing the required amount of labeled data, and hence reducing annotation costs. Our approach also improves out-of-distribution generalization for very low-resource accents, demonstrating the viability of our approach for building generalizable ASR models in the context of accented African clinical ASR, where training datasets are predominantly scarce.
Since their inception, Variational Autoencoders (VAEs) have become central in machine learning. Despite their widespread use, numerous questions regarding their theoretical properties remain open. Using PAC-Bayesian theory, this work develops statistical guarantees for VAEs. First, we derive the first PAC-Bayesian bound for posterior distributions conditioned on individual samples from the data-generating distribution. Then, we utilize this result to develop generalization guarantees for the VAE's reconstruction loss, as well as upper bounds on the distance between the input and the regenerated distributions. More importantly, we provide upper bounds on the Wasserstein distance between the input distribution and the distribution defined by the VAE's generative model.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Natural Language Processing (NLP) has been revolutionized by the use of Pre-trained Language Models (PLMs) such as BERT. Despite setting new records in nearly every NLP task, PLMs still face a number of challenges including poor interpretability, weak reasoning capability, and the need for a lot of expensive annotated data when applied to downstream tasks. By integrating external knowledge into PLMs, \textit{\underline{K}nowledge-\underline{E}nhanced \underline{P}re-trained \underline{L}anguage \underline{M}odels} (KEPLMs) have the potential to overcome the above-mentioned limitations. In this paper, we examine KEPLMs systematically through a series of studies. Specifically, we outline the common types and different formats of knowledge to be integrated into KEPLMs, detail the existing methods for building and evaluating KEPLMS, present the applications of KEPLMs in downstream tasks, and discuss the future research directions. Researchers will benefit from this survey by gaining a quick and comprehensive overview of the latest developments in this field.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Bidirectional Encoder Representations from Transformers (BERT) has shown marvelous improvements across various NLP tasks. Recently, an upgraded version of BERT has been released with Whole Word Masking (WWM), which mitigate the drawbacks of masking partial WordPiece tokens in pre-training BERT. In this technical report, we adapt whole word masking in Chinese text, that masking the whole word instead of masking Chinese characters, which could bring another challenge in Masked Language Model (MLM) pre-training task. The model was trained on the latest Chinese Wikipedia dump. We aim to provide easy extensibility and better performance for Chinese BERT without changing any neural architecture or even hyper-parameters. The model is verified on various NLP tasks, across sentence-level to document-level, including sentiment classification (ChnSentiCorp, Sina Weibo), named entity recognition (People Daily, MSRA-NER), natural language inference (XNLI), sentence pair matching (LCQMC, BQ Corpus), and machine reading comprehension (CMRC 2018, DRCD, CAIL RC). Experimental results on these datasets show that the whole word masking could bring another significant gain. Moreover, we also examine the effectiveness of Chinese pre-trained models: BERT, ERNIE, BERT-wwm. We release the pre-trained model (both TensorFlow and PyTorch) on GitHub: //github.com/ymcui/Chinese-BERT-wwm