As Distributed Ledger Technologies (DLTs) rapidly evolve, their impacts extend beyond technology, influencing environmental and societal aspects. This evolution has increased publications, making manual literature analysis increasingly challenging. We address this with a Natural Language Processing (NLP)-based systematic literature review method to explore the intersection of Distributed Ledger Technology (DLT) with its Environmental, Social, and Governance (ESG) aspects. Our approach involves building and refining a directed citation network from 107 seed papers to a corpus of 24,539 publications and fine-tuning a transformer-based language model for Named Entity Recognition (NER) on DLT and ESG domains. Applying this model, we distilled the corpus to 505 key publications, enabling an inaugural literature review and temporal graph analysis of DLT's evolution in ESG contexts. Our contributions include an adaptable and scalable NLP-driven systematic literature review methodology and a unique NER dataset of 54,808 entities, tailored for DLT and ESG research. Our inaugural literature review demonstrates their applicability and effectiveness in analyzing DLT's evolution and impacts, proving invaluable for stakeholders in the DLT domain.
Community Question Answering (CQA) platforms steadily gain popularity as they provide users with fast responses to their queries. The swiftness of these responses is contingent on a mixture of query-specific and user-related elements. This paper scrutinizes these contributing factors within the context of six highly popular CQA platforms, identified through their standout answering speed. Our investigation reveals a correlation between the time taken to yield the first response to a question and several variables: the metadata, the formulation of the questions, and the level of interaction among users. Additionally, by employing conventional machine learning models to analyze these metadata and patterns of user interaction, we endeavor to predict which queries will receive their initial responses promptly.
The task of separating dynamic objects from static environments using NeRFs has been widely studied in recent years. However, capturing large-scale scenes still poses a challenge due to their complex geometric structures and unconstrained dynamics. Without the help of 3D motion cues, previous methods often require simplified setups with slow camera motion and only a few/single dynamic actors, leading to suboptimal solutions in most urban setups. To overcome such limitations, we present RoDUS, a pipeline for decomposing static and dynamic elements in urban scenes, with thoughtfully separated NeRF models for moving and non-moving components. Our approach utilizes a robust kernel-based initialization coupled with 4D semantic information to selectively guide the learning process. This strategy enables accurate capturing of the dynamics in the scene, resulting in reduced artifacts caused by NeRF on background reconstruction, all by using self-supervision. Notably, experimental evaluations on KITTI-360 and Pandaset datasets demonstrate the effectiveness of our method in decomposing challenging urban scenes into precise static and dynamic components.
As jurisdictions around the world take their first steps toward regulating the most powerful AI systems, such as the EU AI Act and the US Executive Order 14110, there is a growing need for effective enforcement mechanisms that can verify compliance and respond to violations. We argue that compute providers should have legal obligations and ethical responsibilities associated with AI development and deployment, both to provide secure infrastructure and to serve as intermediaries for AI regulation. Compute providers can play an essential role in a regulatory ecosystem via four key capacities: as securers, safeguarding AI systems and critical infrastructure; as record keepers, enhancing visibility for policymakers; as verifiers of customer activities, ensuring oversight; and as enforcers, taking actions against rule violations. We analyze the technical feasibility of performing these functions in a targeted and privacy-conscious manner and present a range of technical instruments. In particular, we describe how non-confidential information, to which compute providers largely already have access, can provide two key governance-relevant properties of a computational workload: its type-e.g., large-scale training or inference-and the amount of compute it has consumed. Using AI Executive Order 14110 as a case study, we outline how the US is beginning to implement record keeping requirements for compute providers. We also explore how verification and enforcement roles could be added to establish a comprehensive AI compute oversight scheme. We argue that internationalization will be key to effective implementation, and highlight the critical challenge of balancing confidentiality and privacy with risk mitigation as the role of compute providers in AI regulation expands.
Recent developments in Language Models (LMs) have shown their effectiveness in NLP tasks, particularly in knowledge-intensive tasks. However, the mechanisms underlying knowledge storage and memory access within their parameters remain elusive. In this paper, we investigate whether a generative LM (e.g., GPT-2) is able to access its memory sequentially or randomly. Through carefully-designed synthetic tasks, covering the scenarios of full recitation, selective recitation and grounded question answering, we reveal that LMs manage to sequentially access their memory while encountering challenges in randomly accessing memorized content. We find that techniques including recitation and permutation improve the random memory access capability of LMs. Furthermore, by applying this intervention to realistic scenarios of open-domain question answering, we validate that enhancing random access by recitation leads to notable improvements in question answering. The code to reproduce our experiments can be found at //github.com/sail-sg/lm-random-memory-access.
Context. The adoption of Machine Learning (ML)--enabled systems is steadily increasing. Nevertheless, there is a shortage of ML-specific quality assurance approaches, possibly because of the limited knowledge of how quality-related concerns emerge and evolve in ML-enabled systems. Objective. We aim to investigate the emergence and evolution of specific types of quality-related concerns known as ML-specific code smells, i.e., sub-optimal implementation solutions applied on ML pipelines that may significantly decrease both the quality and maintainability of ML-enabled systems. More specifically, we present a plan to study ML-specific code smells by empirically analyzing (i) their prevalence in real ML-enabled systems, (ii) how they are introduced and removed, and (iii) their survivability. Method. We will conduct an exploratory study, mining a large dataset of ML-enabled systems and analyzing over 400k commits about 337 projects. We will track and inspect the introduction and evolution of ML smells through CodeSmile, a novel ML smell detector that we will build to enable our investigation and to detect ML-specific code smells.
Multi-modal Large Language Models (MLLMs) have shown remarkable capabilities in various multi-modal tasks. Nevertheless, their performance in fine-grained image understanding tasks is still limited. To address this issue, this paper proposes a new framework to enhance the fine-grained image understanding abilities of MLLMs. Specifically, we present a new method for constructing the instruction tuning dataset at a low cost by leveraging annotations in existing datasets. A self-consistent bootstrapping method is also introduced to extend existing dense object annotations into high-quality referring-expression-bounding-box pairs. These methods enable the generation of high-quality instruction data which includes a wide range of fundamental abilities essential for fine-grained image perception. Moreover, we argue that the visual encoder should be tuned during instruction tuning to mitigate the gap between full image perception and fine-grained image perception. Experimental results demonstrate the superior performance of our method. For instance, our model exhibits a 5.2% accuracy improvement over Qwen-VL on GQA and surpasses the accuracy of Kosmos-2 by 24.7% on RefCOCO_val. We have also attained the top rank on the leaderboard of MMBench. This promising performance is achieved by training on only publicly available data, making it easily reproducible. The models, datasets, and codes are publicly available at //github.com/SY-Xuan/Pink.
We present a real-time visualization system for Transcranial Magnetic Stimulation (TMS), a non-invasive neuromodulation technique for treating various brain disorders and mental health diseases. Our solution targets the current challenges of slow and labor-intensive practices in treatment planning. Integrating Deep Learning (DL), our system rapidly predicts electric field (E-field) distributions in 0.2 seconds for precise and effective brain stimulation. The core advancement lies in our tool's real-time neuronavigation visualization capabilities, which support clinicians in making more informed decisions quickly and effectively. We assess our system's performance through three studies: First, a real-world use case scenario in a clinical setting, providing concrete feedback on applicability and usability in a practical environment. Second, a comparative analysis with another TMS tool focusing on computational efficiency across various hardware platforms. Lastly, we conducted an expert user study to measure usability and influence in optimizing TMS treatment planning. The system is openly available for community use and further development on GitHub: \url{//github.com/lorifranke/SlicerTMS}.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.