亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Positive-Unlabeled (PU) Learning is a challenge presented by binary classification problems where there is an abundance of unlabeled data along with a small number of positive data instances, which can be used to address chronic disease screening problem. State-of-the-art PU learning methods have resulted in the development of various risk estimators, yet they neglect the differences among distinct populations. To address this issue, we present a novel Positive-Unlabeled Learning Tree (PUtree) algorithm. PUtree is designed to take into account communities such as different age or income brackets, in tasks of chronic disease prediction. We propose a novel approach for binary decision-making, which hierarchically builds community-based PU models and then aggregates their deliverables. Our method can explicate each PU model on the tree for the optimized non-leaf PU node splitting. Furthermore, a mask-recovery data augmentation strategy enables sufficient training of the model in individual communities. Additionally, the proposed approach includes an adversarial PU risk estimator to capture hierarchical PU-relationships, and a model fusion network that integrates data from each tree path, resulting in robust binary classification results. We demonstrate the superior performance of PUtree as well as its variants on two benchmarks and a new diabetes-prediction dataset.

相關內容

Fourier feature approximations have been successfully applied in the literature for scalable Gaussian Process (GP) regression. In particular, Quadrature Fourier Features (QFF) derived from Gaussian quadrature rules have gained popularity in recent years due to their improved approximation accuracy and better calibrated uncertainty estimates compared to Random Fourier Feature (RFF) methods. However, a key limitation of QFF is that its performance can suffer from well-known pathologies related to highly oscillatory quadrature, resulting in mediocre approximation with limited features. We address this critical issue via a new Trigonometric Quadrature Fourier Feature (TQFF) method, which uses a novel non-Gaussian quadrature rule specifically tailored for the desired Fourier transform. We derive an exact quadrature rule for TQFF, along with kernel approximation error bounds for the resulting feature map. We then demonstrate the improved performance of our method over RFF and Gaussian QFF in a suite of numerical experiments and applications, and show the TQFF enjoys accurate GP approximations over a broad range of length-scales using fewer features.

Diminished Reality (DR) is considered as the conceptual counterpart to Augmented Reality (AR), and has recently gained increasing attention from both industry and academia. Unlike AR which adds virtual objects to the real world, DR allows users to remove physical content from the real world. When combined with object replacement technology, it presents an further exciting avenue for exploration within the metaverse. Although a few researches have been conducted on the intersection of object substitution and DR, there is no real-time object substitution for mobile diminished reality architecture with high quality. In this paper, we propose an end-to-end architecture to facilitate immersive and real-time scene construction for mobile devices with edge computing.

Machine Learning (ML) is increasingly used to implement advanced applications with non-deterministic behavior, which operate on the cloud-edge continuum. The pervasive adoption of ML is urgently calling for assurance solutions assessing applications non-functional properties (e.g., fairness, robustness, privacy) with the aim to improve their trustworthiness. Certification has been clearly identified by policymakers, regulators, and industrial stakeholders as the preferred assurance technique to address this pressing need. Unfortunately, existing certification schemes are not immediately applicable to non-deterministic applications built on ML models. This article analyzes the challenges and deficiencies of current certification schemes, discusses open research issues, and proposes a first certification scheme for ML-based applications.

Leave-one-out cross-validation (LOO-CV) is a popular method for comparing Bayesian models based on their estimated predictive performance on new, unseen, data. As leave-one-out cross-validation is based on finite observed data, there is uncertainty about the expected predictive performance on new data. By modeling this uncertainty when comparing two models, we can compute the probability that one model has a better predictive performance than the other. Modeling this uncertainty well is not trivial, and for example, it is known that the commonly used standard error estimate is often too small. We study the properties of the Bayesian LOO-CV estimator and the related uncertainty estimates when comparing two models. We provide new results of the properties both theoretically in the linear regression case and empirically for multiple different models and discuss the challenges of modeling the uncertainty. We show that problematic cases include: comparing models with similar predictions, misspecified models, and small data. In these cases, there is a weak connection in the skewness of the individual leave-one-out terms and the distribution of the error of the Bayesian LOO-CV estimator. We show that it is possible that the problematic skewness of the error distribution, which occurs when the models make similar predictions, does not fade away when the data size grows to infinity in certain situations. Based on the results, we also provide practical recommendations for the users of Bayesian LOO-CV for model comparison.

Cross-Domain Recommendation (CDR) stands as a pivotal technology addressing issues of data sparsity and cold start by transferring general knowledge from the source to the target domain. However, existing CDR models suffer limitations in adaptability across various scenarios due to their inherent complexity. To tackle this challenge, recent advancements introduce universal CDR models that leverage shared embeddings to capture general knowledge across domains and transfer it through "Multi-task Learning" or "Pre-train, Fine-tune" paradigms. However, these models often overlook the broader structural topology that spans domains and fail to align training objectives, potentially leading to negative transfer. To address these issues, we propose a motif-based prompt learning framework, MOP, which introduces motif-based shared embeddings to encapsulate generalized domain knowledge, catering to both intra-domain and inter-domain CDR tasks. Specifically, we devise three typical motifs: butterfly, triangle, and random walk, and encode them through a Motif-based Encoder to obtain motif-based shared embeddings. Moreover, we train MOP under the "Pre-training \& Prompt Tuning" paradigm. By unifying pre-training and recommendation tasks as a common motif-based similarity learning task and integrating adaptable prompt parameters to guide the model in downstream recommendation tasks, MOP excels in transferring domain knowledge effectively. Experimental results on four distinct CDR tasks demonstrate the effectiveness of MOP than the state-of-the-art models.

Reinforcement Learning (RL)-based recommender systems (RSs) have garnered considerable attention due to their ability to learn optimal recommendation policies and maximize long-term user rewards. However, deploying RL models directly in online environments and generating authentic data through A/B tests can pose challenges and require substantial resources. Simulators offer an alternative approach by providing training and evaluation environments for RS models, reducing reliance on real-world data. Existing simulators have shown promising results but also have limitations such as simplified user feedback, lacking consistency with real-world data, the challenge of simulator evaluation, and difficulties in migration and expansion across RSs. To address these challenges, we propose KuaiSim, a comprehensive user environment that provides user feedback with multi-behavior and cross-session responses. The resulting simulator can support three levels of recommendation problems: the request level list-wise recommendation task, the whole-session level sequential recommendation task, and the cross-session level retention optimization task. For each task, KuaiSim also provides evaluation protocols and baseline recommendation algorithms that further serve as benchmarks for future research. We also restructure existing competitive simulators on the KuaiRand Dataset and compare them against KuaiSim to future assess their performance and behavioral differences. Furthermore, to showcase KuaiSim's flexibility in accommodating different datasets, we demonstrate its versatility and robustness when deploying it on the ML-1m dataset.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司